From 461f267746a9aa9245d5e54f254e1331d656362e Mon Sep 17 00:00:00 2001 From: Cherif Date: Sun, 19 Oct 2025 14:06:45 +0200 Subject: [PATCH] 19/10/2025 - 14h Signed-off-by: Cherif --- .idea/workspace.xml | 18 +- Inscription_mgt.py | 55 +- Job_Cron_Common.py | 2 - Log/log_file.log | 36031 ++++++++++++++++ Session_Formation.py | 205 +- .../invoice_RIB_PortCities_perso_tpl.html | 57 +- apprenant_mgt.py | 6 +- base_class_calcul_note.py | 81 +- email_mgt.py | 10 +- internal_email_mgt.py | 141 +- main.py | 11 +- partner_invoice.py | 105 +- prj_common.py | 33 +- temp_directAttestation_.pdf | 148 - 14 files changed, 36653 insertions(+), 250 deletions(-) delete mode 100644 temp_directAttestation_.pdf diff --git a/.idea/workspace.xml b/.idea/workspace.xml index b2fea48..0ef9310 100644 --- a/.idea/workspace.xml +++ b/.idea/workspace.xml @@ -4,11 +4,21 @@ - @@ -518,6 +527,7 @@ - \ No newline at end of file diff --git a/Inscription_mgt.py b/Inscription_mgt.py index 6102f52..2deb682 100644 --- a/Inscription_mgt.py +++ b/Inscription_mgt.py @@ -82,7 +82,7 @@ def AddStagiairetoClass(diction): 'tuteur2_nom', 'tuteur2_prenom', 'tuteur2_email', 'tuteur2_telephone', 'tuteur2_adresse', 'tuteur2_cp', 'tuteur2_ville', 'tuteur2_pays', 'tuteur2_include_com','date_naissance', 'financeur_rattachement_id', 'tuteur1_civilite', 'tuteur2_civilite', 'quotation_id', - 'facture_client_rattachement_id', 'tab_ue_ids', + 'facture_client_rattachement_id', 'tab_ue_ids','memo', 'comment' ] incom_keys = diction.keys() @@ -175,6 +175,19 @@ def AddStagiairetoClass(diction): session_id = str(diction['session_id']).strip() mydata['session_id'] = session_id + memo = "" + if ("memo" in diction.keys()): + if diction['memo']: + memo = str(diction['memo']).strip() + mydata['memo'] = memo + + comment = "" + if ("comment" in diction.keys()): + if diction['comment']: + comment = str(diction['comment']).strip() + mydata['comment'] = comment + + """ Verififier l'existance et la valididĂ© de la session @@ -917,7 +930,7 @@ def UpdateStagiairetoClass(diction): 'tuteur1_cp', 'tuteur1_ville', 'tuteur1_pays', 'tuteur1_include_com', 'tuteur2_nom', 'tuteur2_prenom', 'tuteur2_email', 'tuteur2_telephone', 'tuteur2_adresse', 'tuteur2_cp', 'tuteur2_ville', 'tuteur2_pays', 'tuteur2_include_com', 'type_apprenant', 'civilite', - 'date_naissance', 'financeur_rattachement_id', 'facture_client_rattachement_id' + 'date_naissance', 'financeur_rattachement_id', 'facture_client_rattachement_id', 'memo' ] incom_keys = diction.keys() @@ -1149,6 +1162,9 @@ def UpdateStagiairetoClass(diction): if ("comment" in diction.keys()): mydata['comment'] = str(diction['comment']).strip() + if ("memo" in diction.keys()): + mydata['memo'] = str(diction['memo']).strip() + if ("client_rattachement_id" in diction.keys()): mydata['client_rattachement_id'] = str(diction['client_rattachement_id']).strip() @@ -1300,6 +1316,11 @@ def UpdateStagiairetoClass(diction): if diction['comment']: email_data['comment'] = diction['comment'] + if ("memo" in diction.keys()): + if diction['memo']: + email_data['memo'] = diction['memo'] + + if ("code_session" in local_tmp_session_data.keys()): if local_tmp_session_data['code_session']: email_data['code_session'] = local_tmp_session_data['code_session'] @@ -8022,11 +8043,6 @@ def Get_Statgaire_List_Partner_with_filter(diction): - #print(" #### recyclage_warning = ", str(recyclage_warning), " ### recyclage_warning_lead_time = ", str(recyclage_warning_lead_time)) - - - - """ Etape 1 : si on a le champ 'code session' saisie par l'utilisateur, alors on va commencer par aller cherche toutes les session avec un regex de la valeur saisie filter sur le partner_recid @@ -8071,20 +8087,20 @@ def Get_Statgaire_List_Partner_with_filter(diction): filt_class_title = {} if ("class_title" in diction.keys()): - filt_class_title = {'title': {'$regex': str(diction['class_title']), "$options": "i"}} + filt_class_title = {'title': {'$regex': mycommon.regex_replace_cartere(str(diction['class_title'])), "$options": "i"}} filt_class_internal_url = {} if ("class_internal_url" in diction.keys()): filt_class_internal_url = { - 'class_internal_url': {'$regex': str(diction['class_internal_url']), "$options": "i"}} + 'class_internal_url': {'$regex': mycommon.regex_replace_cartere(str(diction['class_internal_url'])), "$options": "i"}} filt_email = {} if ("email" in diction.keys()): - filt_email = {'email': {'$regex': str(diction['email']), "$options": "i"}} + filt_email = {'email': {'$regex': mycommon.regex_replace_cartere(str(diction['email'])), "$options": "i"}} filt_nom = {} if ("nom" in diction.keys()): - filt_nom = {'nom': {'$regex': str(diction['nom']), "$options": "i"}} + filt_nom = {'nom': {'$regex': mycommon.regex_replace_cartere(str(diction['nom'])), "$options": "i"}} filt_class_partner_recid = {'partner_owner_recid': str(partner_recid)} @@ -8804,6 +8820,19 @@ def GetAttendeeDetail_perSession_from_line_id(diction): local_employeur = local_Insc_retval['employeur'] my_retrun_dict['employeur'] = local_employeur + memo = "" + if ("memo" in local_Insc_retval.keys()): + memo = local_Insc_retval['memo'] + my_retrun_dict['memo'] = memo + + + comment = "" + if ("comment" in local_Insc_retval.keys()): + comment = local_Insc_retval['comment'] + my_retrun_dict['comment'] = comment + + + local_telephone = "" if ("telephone" in local_Insc_retval.keys()): local_telephone = local_Insc_retval['telephone'] @@ -12532,12 +12561,12 @@ def Export_Inscription_To_Excel_From_from_List_Id(diction): tab_exported_fields_header = ["apprenant_id", "nom", "email", "prenom", "civilite", "date_naissance", "telephone", "employeur", "client_rattachement_id", "adresse", "code_postal", "ville", "pays", "tuteur1_nom", "tuteur1_prenom", "tuteur1_email", "tuteur1_telephone", "tuteur2_nom", "tuteur2_prenom", "tuteur2_email", "tuteur2_telephone", "opco", "comment", "tuteur1_adresse", "tuteur1_cp", "tuteur1_ville", "tuteur1_pays", "tuteur1_include_com", "tuteur2_adresse", "tuteur2_cp", "tuteur2_ville", "tuteur2_pays", "tuteur2_include_com", - "client_nom", "client_raison_sociale", "Session_titre", "code_session", "session_date_debut", "session_date_fin"] + "client_nom", "client_raison_sociale", "Session_titre", "code_session", "session_date_debut", "session_date_fin", "memo"] tab_exported_fields = ["nom", "email", "prenom", "civilite", "date_naissance", "telephone", "employeur", "client_rattachement_id", "adresse", "code_postal", "ville", "pays", "tuteur1_nom", "tuteur1_prenom", "tuteur1_email", "tuteur1_telephone", "tuteur2_nom", "tuteur2_prenom", "tuteur2_email", "tuteur2_telephone", "opco", "comment", "tuteur1_adresse", "tuteur1_cp", "tuteur1_ville", "tuteur1_pays", - "tuteur1_include_com", "tuteur2_adresse", "tuteur2_cp", "tuteur2_ville", "tuteur2_pays", "tuteur2_include_com"] + "tuteur1_include_com", "tuteur2_adresse", "tuteur2_cp", "tuteur2_ville", "tuteur2_pays", "tuteur2_include_com", "memo"] # Create a workbook and add a worksheet. workbook = xlsxwriter.Workbook(outputFilename) diff --git a/Job_Cron_Common.py b/Job_Cron_Common.py index 53e88d1..380652b 100644 --- a/Job_Cron_Common.py +++ b/Job_Cron_Common.py @@ -858,8 +858,6 @@ def Sent_Convocation_Stagiaire_By_Email(tab_files, Folder, diction): new_file['object_owner_collection'] = "partner_client" new_file['object_owner_id'] = str(inscription_data['client_rattachement_id']) - - new_file['file_name_to_store'] = outputFilename # print(" ### new_file new_file = ", new_file) diff --git a/Log/log_file.log b/Log/log_file.log index 59a7be6..12e4391 100644 --- a/Log/log_file.log +++ b/Log/log_file.log @@ -321183,3 +321183,36034 @@ INFO:werkzeug:127.0.0.1 - - [14/Oct/2025 23:12:18] "POST /myclass/api/Get_List_U INFO:werkzeug:127.0.0.1 - - [14/Oct/2025 23:12:18] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - INFO:root:2025-10-14 23:12:25.865651 : Security check : IP adresse '127.0.0.1' connected INFO:werkzeug:127.0.0.1 - - [14/Oct/2025 23:12:25] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-15 20:17:10.718300 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-15 20:17:10.718300 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-15 20:17:10.718300 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-15 20:17:10.718300 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-15 20:17:10.718300 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-15 20:17:19.326407 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-15 20:17:19.326407 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-15 20:17:19.326407 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-15 20:17:19.326407 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-15 20:17:19.326407 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-15 20:20:41.833128 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:20:41] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:20:43.055009 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:20:43.057009 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:20:43.059011 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:20:43.062534 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:20:43] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:20:43.077056 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:20:43] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:20:43] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:20:43.165959 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:20:43.167958 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:20:43.170467 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:20:43.173477 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:20:43.175476 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:20:43] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:20:43.180478 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:20:43] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:20:43] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:20:43] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:20:43] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:20:43] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:20:43] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:20:45.710364 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:20:45.711372 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:20:45] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:20:45] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:20:49.820919 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:20:49] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:21:01.099542 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:21:01.100542 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:21:01.103544 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:21:01.104544 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:21:01] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:21:01.113543 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:21:01] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:21:01] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:21:01] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:21:01.157609 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:21:01.159612 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:21:01.161615 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:21:01.165128 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:21:01.169135 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:21:01] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:21:01] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:21:01.174648 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:21:01] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:21:01] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:21:01] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:21:01] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:26:14.403270 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:26:14.406248 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:26:14] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:26:14] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:26:44.520227 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:26:44.523627 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:26:44] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:26:44] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:28:44.285613 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:28:44.288610 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:28:44.289611 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:28:44.292610 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:28:44] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:28:44.302724 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:28:44] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:28:44] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:28:44] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:28:44.340723 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:28:44.342726 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:28:44.343724 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:28:44.347724 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:28:44] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:28:44.349727 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:28:44.350724 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:28:44] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:28:44] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:28:44] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:28:44] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:28:44] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:28:46.678784 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:28:46.680786 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:28:46] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:28:46] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:28:50.212429 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:28:50] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:33:11.298073 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:33:11.300073 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:11] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:11] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:33:15.673292 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:33:15.675290 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:33:15.678291 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:33:15.680415 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:15] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:33:15.690416 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:15] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:15] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:15] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:33:15.733413 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:33:15.735412 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:33:15.737415 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:33:15.738412 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:33:15.740412 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:33:15.743415 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:15] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:15] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:15] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:15] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:15] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:15] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:33:17.304479 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:33:17.306467 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:17] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:17] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:33:19.612859 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:33:19] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:36:54.037276 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:36:54.041782 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:36:54] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:36:54] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:37:14.027948 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:37:14.030946 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:37:14.034458 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:37:14] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:37:14.039776 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:37:14.046203 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:37:14] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:37:14] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:37:14] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:37:14.093699 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:37:14.095702 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:37:14.097701 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:37:14.100702 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:37:14] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:37:14.103700 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:37:14] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:37:14.108905 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:37:14] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:37:14] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:37:14] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:37:14] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:37:19.950922 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:37:19.951921 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:37:19] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:37:19] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:37:21.959337 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:37:21] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:39:27.011143 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:39:27.012144 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:39:27] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:39:27] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:41:18.390980 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:41:18.393979 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:41:18] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:41:18] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:46:46.791626 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:46:46.793620 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:46:46] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:46:46] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:47:26.339182 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:47:26] "POST /myclass/api/Store_User_Downloaded_File/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:47:26.385511 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 20:47:26.386516 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:47:26] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:47:26] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:47:35.097934 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:47:35] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:47:35.135901 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:47:35] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:47:45.177750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:47:45] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:47:54.518762 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:47:54] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-15 20:49:56.260716 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-15 20:49:56.260716 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-15 20:49:56.260716 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-15 20:49:56.261616 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-15 20:49:56.261616 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-15 20:51:31.167304 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-15 20:51:31.167304 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-15 20:51:31.167304 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-15 20:51:31.167304 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-15 20:51:31.167304 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-15 20:51:43.593342 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-15 20:51:43.593342 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-15 20:51:43.593342 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-15 20:51:43.593342 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-15 20:51:43.593342 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-15 20:52:09.682176 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:52:09] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:52:11.355099 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:52:11] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:55:09.755398 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:55:09] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:55:17.679794 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:55:17] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-15 20:55:52.545785 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-15 20:55:52.546682 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-15 20:55:52.546682 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-15 20:55:52.546682 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-15 20:55:52.546682 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-15 20:55:52.742547 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:55:52] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:55:56.040863 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:55:56] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-15 20:56:23.782689 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-15 20:56:23.782689 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-15 20:56:23.782689 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-15 20:56:23.782689 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-15 20:56:23.782689 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-15 20:56:23.961905 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:56:23] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:56:27.224329 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:56:27] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-15 20:56:53.678397 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-15 20:56:53.678397 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-15 20:56:53.678397 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-15 20:56:53.678397 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-15 20:56:53.678397 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-15 20:56:54.727835 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:56:54] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:56:55.798069 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:56:55] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-15 20:58:27.043281 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-15 20:58:27.044280 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-15 20:58:27.044280 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-15 20:58:27.044280 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-15 20:58:27.044280 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-15 20:58:55.107303 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-15 20:58:55.107303 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-15 20:58:55.107303 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-15 20:58:55.107303 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-15 20:58:55.107303 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-15 20:59:29.248239 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-15 20:59:29.248239 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-15 20:59:29.249232 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-15 20:59:29.249232 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-15 20:59:29.249232 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-15 20:59:29.708845 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:59:29] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:59:37.848865 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:59:37] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-15 20:59:53.130149 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-15 20:59:53.130149 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-15 20:59:53.130149 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-15 20:59:53.130149 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-15 20:59:53.130149 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-15 20:59:56.514376 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:59:56] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 20:59:58.396400 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 20:59:58] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:00:06.436647 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:00:06] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:00:54.545009 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:00:54.551008 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:00:54] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:00:54] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:01:12.124342 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:01:12] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:01:14.159563 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:01:14] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:01:15.924349 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:01:15] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:01:18.581050 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:01:18] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:01:20.706420 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:01:20] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:01:25.765981 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:01:25] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:02:54.163611 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:02:54] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:02:59.717503 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:02:59] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:03:10.571393 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:10] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:03:34.345757 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:34.346757 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:34.348757 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:34.350757 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:34.351761 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:34] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:03:34.353761 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:34] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:03:34.356762 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:34.359762 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:34.361763 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:34] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:03:34.363762 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:34] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:34] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:03:34.368435 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:34.370436 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:34] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:34] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:34] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:34] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:34] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:34] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:34] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:03:37.164756 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:37.166762 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:37.167800 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:37.169788 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:37.171122 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:37] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:37] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:37] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:03:37.175578 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:37.176579 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:37] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:37] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:37] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:37] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:03:39.875962 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:39.877962 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:39.878962 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:39.880964 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:39.882963 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:39] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:39] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:39] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:40] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:40] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:03:44.725869 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:03:44.726846 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:44] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:45] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:03:56.532115 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:03:56] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:06:08.663588 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:06:08] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:06:09.115582 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:06:09] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:06:46.217781 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:06:46.221759 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:06:46] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:06:46] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:07:54.862176 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:07:54] "POST /myclass/api/Delete_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:07:54.905334 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:07:54] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:07:58.186211 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:07:58] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:10:56.884224 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:10:56.886230 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:10:56] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:10:56] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:11:01.864429 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:11:01] "POST /myclass/api/Store_User_Downloaded_File/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:11:01.914632 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:11:01.915633 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:11:01] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:11:01] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:11:12.645099 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:11:12] "POST /myclass/api/Store_User_Downloaded_File/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:11:12.696442 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:11:12.697438 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:11:12] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:11:12] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:11:41.104202 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:11:41.106104 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:11:41] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:11:41] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:12:59.633209 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:12:59.634946 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:12:59] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:12:59] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:13:07.120919 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:13:07.122918 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:13:07.124918 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:13:07] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:13:07.128918 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:13:07.135919 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:13:07] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:13:07] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:13:07] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:13:07.169189 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:13:07.171217 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:13:07.172188 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:13:07.173189 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:13:07] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:13:07.176190 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:13:07.177189 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:13:07] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:13:07] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:13:07] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:13:07] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:13:07] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:13:09.096751 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:13:09.098750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:13:09] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:13:09] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:13:11.425829 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:13:11] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:16:04.974104 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:16:04.976122 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:16:04] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:16:04] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:17:40.832736 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:17:40.835738 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:17:40.837741 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:17:40.838738 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:17:40] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:17:40.846259 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:17:40] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:17:40] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:17:40] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:17:40.878254 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:17:40.879255 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:17:40.881261 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:17:40.883256 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:17:40.884254 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:17:40] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:17:40] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:17:40.889260 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:17:40] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:17:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:17:40] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:17:40] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:17:42.543634 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:17:42.546634 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:17:42] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:17:42] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:17:44.354965 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:17:44] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:18:31.843661 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:18:31.846659 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:18:31.847660 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:18:31.849660 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:18:31] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:18:31.857661 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:18:31] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:18:31] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:18:31.889661 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:18:31.891662 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:18:31] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:18:31] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:18:31] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:18:31.900661 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:18:31.904662 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:18:31.906661 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:18:31] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:18:31.908661 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:18:31] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:18:31] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:18:31] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:18:33.588800 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:18:33.590799 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:18:33] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:18:33] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:18:35.478401 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:18:35] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:19:36.796892 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:19:36.798864 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:19:36.802389 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:19:36] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:19:36.808413 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:19:36.814432 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:19:36] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:19:36] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:19:36] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:19:36.849501 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:19:36.853486 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:19:36] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:19:36.856487 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:19:36.858488 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:19:36] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:19:36] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:19:36.863485 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:19:36] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:19:36.869521 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:19:36] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:19:36] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:19:39.441630 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:19:39.443635 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:19:39] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:19:39] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:19:41.224189 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:19:41] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:20:03.056583 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:20:03.058581 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:20:03.060581 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:20:03.062583 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:20:03] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:20:03.074582 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:20:03] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:20:03] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:20:03] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:20:03.116109 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:20:03.118111 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:20:03.119108 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:20:03.121108 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:20:03.124111 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:20:03.126110 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:20:03] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:20:03] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:20:03] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:20:03] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:20:03] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:20:03] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:20:05.587205 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:20:05.588203 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:20:05] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:20:05] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:20:07.265869 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:20:07] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:21:05.881615 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:21:05.883616 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:21:05.886616 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:21:05] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:21:05.893140 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:21:05.895644 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:21:05] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:21:05] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:21:05.922162 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:21:05.924168 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:21:05.925168 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:21:05.928163 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:21:05.930163 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:21:05] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:21:05] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:21:05] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:21:05] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:21:05] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:21:05.939162 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:21:05] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:21:05] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:21:21.070440 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:21:21.072432 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:21:21] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:21:21] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:21:25.720526 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:21:25] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-15 21:21:45.682498 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:21:46.179089 : Get_Stored_Downloaded_File -myprint() takes from 0 to 1 positional arguments but 2 were given - ERRORRRR AT Line : 437 +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:21:46] "GET /myclass/api/Get_Stored_Downloaded_File/g-WQ3wdf8aOoa8KtHK3AKXPlAXQgtzFPmg/pdf_exemple_02.pdf HTTP/1.1" 200 - +INFO:root:2025-10-15 21:22:00.611997 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-15 21:22:00.614997 : Delete_Stored_Downloaded_File -bad operand type for unary +: 'str' - ERRORRRR AT Line : 914 +INFO:werkzeug:127.0.0.1 - - [15/Oct/2025 21:22:00] "POST /myclass/api/Delete_Stored_Downloaded_File/ HTTP/1.1" 200 - +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 20:40:03.096526 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 20:40:03.096526 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 20:40:03.097527 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 20:40:03.097527 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 20:40:03.097527 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 20:40:33.343072 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 20:40:33.343994 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 20:40:33.345029 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 20:40:33.345029 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 20:40:33.345029 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-16 20:41:48.871105 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:41:49] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:41:50.882082 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:41:50.886193 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:41:50.892082 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:41:50.902083 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:41:50] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:41:50] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:41:50.965640 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:41:50] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:41:50.981728 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:41:50.991062 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:41:50.994953 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:41:51.010982 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:41:51] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:41:51.023602 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:41:51.041487 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:41:51] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:41:51] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:41:51] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:41:51] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:41:51] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:41:51] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:41:59.032547 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:41:59.041091 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:41:59] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:41:59] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:42:29.107005 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:42:29] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:47:05.299856 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:47:05.303384 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:47:05] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:47:05] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:49:05.937870 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:49:05.943201 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:49:05] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:49:05] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:51:04.698445 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:51:04.703972 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:51:04] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:51:04] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:52:10.409143 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:52:10.415349 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:52:10] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:52:10] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:52:46.484236 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:52:46.488224 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:52:46] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:52:46] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:53:03.161862 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:53:03.165868 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:53:03] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:53:03] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:53:46.894209 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:53:46.897293 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:53:46] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:53:46] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:54:44.920839 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:54:44.926872 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:54:44] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:54:44] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:55:05.697295 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:05.699603 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:05.704017 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:05.708020 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:05] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:55:05.724021 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:05] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:05] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:05] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:55:05.790900 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:05.794005 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:05.798523 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:05.802524 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:05] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:05] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:05] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:55:05.814534 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:05.815527 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:05] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:05] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:05] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:55:26.594670 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:26.597982 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:26.600992 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:26.604255 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:26.609784 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:26.615788 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:26.618783 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:26] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:26] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:26] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:26] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:26] "POST /myclass/api/Get_List_Conseil_Classe/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:26] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:26] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:55:28.614107 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:28.620530 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:28.625534 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:28.630054 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:55:28.635055 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:28] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:28] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class_From_Session_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:28] "POST /myclass/api/Get_Given_Jury_With_Members/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:28] "POST /myclass/api/Get_Given_Jury_Apprenant_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:28] "POST /myclass/api/Get_List_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:55:28.717052 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:28] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:55:31.808859 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:55:31] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:56:49.052985 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:49.054984 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:49.058985 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:49.063721 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:49] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:56:49.069746 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:49.071750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:49] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:49] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:56:49.082126 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:49.084541 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:49] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:56:49.094099 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:49.096100 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:49] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:49] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:56:49.103924 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:49.113501 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:49] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:49] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:49] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:49] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:49] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:50] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:56:52.138625 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:52.143965 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:52.148249 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:52.153612 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:52.157020 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:52] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:56:52.162423 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:52.172539 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:52] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:52] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:52] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:52] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:52] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:52] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:56:58.057953 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:58.061314 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:58.065323 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:56:58.071322 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:58] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:56:58.076328 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:58] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:58] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:58] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:56:58] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:57:02.956228 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 20:57:02.962674 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:57:02] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:57:04] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:57:15.985351 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:57:16] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:58:03.039747 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n
\n
\n
\n

N° de déclaration d\'activité :  NDA-001254 

\n
\n
\n
\n
\n
 Est conclue la convention suivante entre
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes : prenom nonn 
Contact :   
Téléphone :  
\n

Et

\n
Et le bénéciaire :
 qsdsq qsdqs 
(Ci-aprés nommé le client)
Situé :     

\n
\n
\n

PRÉAMBULE
EZUS Lyon   Colas Rail filiale de Valorisation de l\'Université Claude Bernard Lyon I, s\'est vue confier la gestion des activités industrielles et commerciales des centres et services de l\'UCBL, ainsi que les actions de formation continue par la convention cadre signée le 23 janvier 2008.

\n

A cet effet, la société Colas Rail  fait appel au : Docteur Eric J. VOIGLIO, MD, PhD, FACS, FRCS Directeur ATLS France.

\n

Est conclu un contrat de formation professionnelle en application de l\'article L6353-3 du Code du Travail.

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation

\n

 Colas Rail 

\nFormation : CONDUIRE UN PROJET 
Durée : 15.0   heure (s) 
Lieu de formation :   vile sit1 
Dates de formation :  13/10/2025  14/10/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 
\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.

\n

Article 4 : Prix de la formation
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire :  1500.0 €

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

Paris , 16/10/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation prenom   nonn 

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n

 

\n
\n

 

\n
\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_00326.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:58:06] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-10-16 20:58:06.897530 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 20:58:07] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\main.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:02:05.230071 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:02:05.231070 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:02:05.231070 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:02:05.231070 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:02:05.231070 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:04:27.376370 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:04:27.376370 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:04:27.377362 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:04:27.377362 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:04:27.377362 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:04:50.781665 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:04:50.781665 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:04:50.781665 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:04:50.781665 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:04:50.781665 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:05:18.757432 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:05:18.757432 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:05:18.757432 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:05:18.757432 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:05:18.757432 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-16 21:06:10.627540 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:06:10.629547 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:06:10.631550 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:06:10.634909 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:06:10.637920 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:06:10.640160 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:06:10.651407 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:10] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:06:10.655900 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:10] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:10] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:06:10.665245 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:10] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:10] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:10] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:06:10.675309 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:06:10.677302 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:10] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:10] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:10] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:10] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:06:12.737834 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:06:12.739835 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:12] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:12] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:06:14.358162 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:14] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:06:50.078419 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:50] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:06:50.173789 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:06:50] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:08:14.286792 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:08:14.290792 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:08:14] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:08:14] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:08:14.420869 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:08:14.423869 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:08:14] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:08:14] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:08:16.003349 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:08:16] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:10:02.808140 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:10:02.810145 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:10:02] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:10:02] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:10:17.556907 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:10:17] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:10:17.650719 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:10:17] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:11:15.414622 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:11:15] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:11:32.243872 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:11:32] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:11:32.304586 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:11:32] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:12:34.799112 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:12:34.803613 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:12:34] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:12:34] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:13:17.194193 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:13:17.197192 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:13:17.205216 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:13:17.209196 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:13:17] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:13:17.243314 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:13:17.249871 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:13:17.258974 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:13:17.259950 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:13:17] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:13:17] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:13:17] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:13:17.281948 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:13:17.299862 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:13:17.304864 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:13:17] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:13:17] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:13:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:13:17] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:13:17] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:13:17] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:13:39.299992 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:13:39.302999 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:13:39] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:13:39] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:13:41.640281 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:13:41] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:13:43.649578 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:13:43] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:15:02.496381 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:15:02.496381 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:15:02.496381 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:15:02.496381 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:15:02.496381 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-16 21:16:46.069676 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:16:46.072733 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:16:46] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:16:46] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:16:51.326982 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:16:51] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:17:40.228827 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:17:40.230829 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:17:40] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:17:40] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:17:56.399751 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:17:56] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:19:06.274745 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:19:06] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:19:07.518470 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:19:07] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:19:12.473905 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:19:12] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:20:39.041400 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:20:39.045411 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:20:39] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:20:39] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:20:52.831328 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:20:52] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:20:58.148418 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:20:58] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:21:00.443628 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:21:00] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:21:02.768626 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:21:02] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:22:54.215076 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:22:54.223977 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:22:54] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:22:54] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:23:28.723750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:23:28] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:23:31.239209 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:23:31] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:23:44.556775 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:23:44] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:23:51.613138 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:23:51] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:24:15.381266 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:24:15] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:24:18.840116 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:24:18] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/L1EJ8zRyR6fONWewXteNqHLcCCykXCdI-Q/68eff1d0d980c4ab7268ba81 HTTP/1.1" 200 - +INFO:root:2025-10-16 21:24:26.491457 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:24:26.534461 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:24:26.538744 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:24:26.542908 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:24:26.545917 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:24:26.552470 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:24:26] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:24:26.561333 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:24:26] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:24:26] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:24:26] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:24:26] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:24:26] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:24:26] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:24:32.266536 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:24:32] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:25:33.820643 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:25:33] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/L1EJ8zRyR6fONWewXteNqHLcCCykXCdI-Q/68eff1d0d980c4ab7268ba81 HTTP/1.1" 304 - +INFO:root:2025-10-16 21:29:16.239206 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:16] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:16.324059 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:16.326068 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:16.327067 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:16.331067 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:16.334070 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:16.337069 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:16] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:16] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:16] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:16] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:16] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:16] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:17.528933 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:17] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:18.652151 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:18.654685 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:18.657748 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:18.659274 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:18.664289 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:18.667294 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:18] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:18.672644 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:18] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:18.680170 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:18] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:18] "POST /myclass/api/Get_List_Class_Niveau_Formation/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:18.684216 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:18.686441 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:18] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:18] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:18] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:18.695460 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:18.699458 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:18] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:18] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:18.703502 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:18] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:18] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:18] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:18] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:19.022703 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:19.025238 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:19.027219 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:19] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:19] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:19] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:34.362088 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:34] "POST /myclass/api/Store_User_Downloaded_File/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:41.308478 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:41.309479 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:41.314479 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:41] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:41.325487 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:41] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:41] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:41.376723 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:41.378723 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:41.380721 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:41.382722 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:41.384722 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:41.388725 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:41] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:41] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:41] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:41] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:41] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:41] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:44.221683 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:44] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:45.428967 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:45] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:46.561573 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:46.563570 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:46.566572 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:46.568574 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:46.574641 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:46.579575 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:46] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:46] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:46.587578 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:46] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:46] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:46.593588 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:46] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:46.598598 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:46.602601 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:46] "POST /myclass/api/Get_List_Class_Niveau_Formation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:46] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:46.614145 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:46.630145 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:46.635149 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:46] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:46] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:46] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:46] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:46] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:46] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:46.938740 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:46] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:46.982493 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:29:46.999520 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:47] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:47] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:29:57.579650 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:29:57] "GET /myclass/api/Get_Stored_Downloaded_File/L1EJ8zRyR6fONWewXteNqHLcCCykXCdI-Q/pdfexemple01_20251016_212934_43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89.pdf HTTP/1.1" 200 - +INFO:root:2025-10-16 21:30:48.809519 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:30:48] "POST /myclass/api/Delete_Stored_Downloaded_File/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:30:48.908627 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:30:48.912628 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:30:48] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:30:48] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:31:00.970365 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:31:00] "POST /myclass/api/Store_User_Downloaded_File/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:36:10.779984 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:36:10.779984 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:36:10.779984 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:36:10.780989 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:36:10.780989 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:37:08.974095 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:37:08.974095 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:37:08.975093 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:37:08.975093 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:37:08.975093 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-16 21:37:13.172618 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:37:13] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:37:38.248588 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:37:38] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:37:38.323254 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:37:38] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:40:25.619121 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:40:25.620158 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:40:25.620158 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:40:25.620158 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:40:25.620158 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-16 21:40:25.839100 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:40:25] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:40:45.991702 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:40:46] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:40:46.055800 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:40:46] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\main.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:43:37.427600 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:43:37.427600 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:43:37.427600 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:43:37.427600 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:43:37.427600 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-16 21:43:38.157802 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:43:38] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:43:47.988643 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:43:48] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:43:48.058440 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:43:48] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:45:09.437211 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:45:09.438192 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:45:09.438192 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:45:09.438192 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:45:09.438192 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:47:47.780347 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:47:47.780347 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:47:47.780347 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:47:47.780347 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:47:47.780347 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:49:58.228473 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:49:58.229372 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:49:58.229372 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:49:58.229372 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:49:58.229372 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-16 21:50:26.401590 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:50:26] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:50:38.520749 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:50:38] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:50:38.616144 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:50:38] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:52:26.133117 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:52:26] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:52:28.629045 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:52:28] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:52:29.890883 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:52:29] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:53:40.203110 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:53:40.203110 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:53:40.203110 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:53:40.203110 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:53:40.203110 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:54:02.904732 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:54:02.905733 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:54:02.905733 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:54:02.905733 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:54:02.905733 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:56:39.340932 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:56:39.340932 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:56:39.340932 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:56:39.340932 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:56:39.340932 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:56:57.721553 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:56:57.722546 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:56:57.722546 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:56:57.722546 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:56:57.722546 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-16 21:56:58.502253 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:56:58] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:57:05.953822 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:57:05] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-16 21:57:08.499331 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:57:08] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:58:53.719716 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:58:53.719716 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:58:53.719716 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:58:53.719716 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:58:53.719716 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:59:04.704959 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:59:04.704959 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:59:04.704959 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:59:04.704959 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:59:04.704959 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-16 21:59:10.085752 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 21:59:14.152869 : Get_Given_Internal_Mail -skip must be an instance of int - Line : 711 +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:59:14] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 21:59:58.791488 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 21:59:58.792478 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 21:59:58.792478 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 21:59:58.792478 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 21:59:58.792478 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-16 21:59:58.996899 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 21:59:59] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 22:01:19.833514 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 22:01:19.838512 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 22:01:19.838512 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 22:01:19.838512 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 22:01:19.839517 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-16 22:01:58.902540 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:01:58.906538 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:01:58] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:01:58] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:02:30.277190 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:02:30] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:02:30.294727 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:02:30] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:02:50.997722 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:02:51] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:02:51.880695 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:02:51] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:02:54.353000 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:02:54] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:04:11.887394 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:04:11.890402 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:04:11] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:04:11] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:06:17.478838 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:06:17] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:06:17.516944 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:06:17] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:06:57.031556 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:06:57.034545 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:06:57.035545 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:06:57.038604 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:06:57] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:06:57.052136 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:06:57] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:06:57] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:06:57] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:06:57.107558 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:06:57.110607 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:06:57.112614 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:06:57.114614 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:06:57.117616 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:06:57.121618 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:06:57] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:06:57] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:06:57] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:06:57] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:06:57] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:06:57] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:06:59.637759 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:06:59.639761 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:06:59] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:06:59] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:07:01.449978 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:07:01] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:07:26.750049 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:07:26] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:07:26.821222 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:07:26] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:07:29.816898 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:07:29] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:07:31.447046 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:07:31] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:10:31.276413 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:10:31.284507 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:10:31.292514 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:10:31.308427 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:10:31] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:10:31.333390 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:10:31] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:10:31] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:10:31] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:10:31.696458 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:10:31.706462 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:10:31.714357 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:10:31] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:10:31] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:10:31] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:10:31.764595 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:10:31.771593 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:10:31.780727 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:10:31] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:10:31] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:10:31] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 22:12:16.921699 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 22:12:16.921699 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 22:12:16.921699 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 22:12:16.921699 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 22:12:16.921699 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 22:13:14.839068 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 22:13:14.839068 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 22:13:14.839068 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 22:13:14.839068 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 22:13:14.839068 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-16 22:13:47.314054 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:13:47.315051 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:13:47] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:13:47] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:13:48.740829 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:13:48] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:13:50.256319 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:13:50] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:14:26.639439 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:14:26.642894 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:14:26.643888 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:14:26.648836 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:26] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:26] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:14:26.673352 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:26] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:26] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:14:26.718407 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:14:26.720407 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:14:26.723409 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:14:26.726408 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:14:26.729408 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:14:26.730408 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:26] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:26] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:26] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:26] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:26] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:26] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:14:28.244529 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-16 22:14:28.246529 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:28] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:28] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:14:30.455749 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:30] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:14:33.740718 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:33] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:14:42.734278 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:42] "GET /myclass/api/Get_Stored_Downloaded_File/L1EJ8zRyR6fONWewXteNqHLcCCykXCdI-Q/CorrigeTD01_20251016220726_20251016_220726_43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89.pdf HTTP/1.1" 200 - +INFO:root:2025-10-16 22:14:46.278193 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:14:46] "GET /myclass/api/Get_Stored_Downloaded_File/L1EJ8zRyR6fONWewXteNqHLcCCykXCdI-Q/pdfexemple02_20251016220726_20251016_220726_43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89.pdf HTTP/1.1" 200 - +INFO:root:2025-10-16 22:15:23.033009 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:15:23] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:15:51.646823 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:15:51] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:15:51.722985 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:15:51] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:15:55.768724 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:15:55] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:15:56.767501 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:15:56] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:15:58.120248 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:15:58] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:16:03.627042 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:16:03] "GET /myclass/api/Get_Stored_Downloaded_File/L1EJ8zRyR6fONWewXteNqHLcCCykXCdI-Q/CorrigeTD01_20251016221551_20251016_221551_43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89.pdf HTTP/1.1" 200 - +INFO:root:2025-10-16 22:16:06.842688 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:16:06] "GET /myclass/api/Get_Stored_Downloaded_File/L1EJ8zRyR6fONWewXteNqHLcCCykXCdI-Q/pdfexemple01_20251016221551_20251016_221551_43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89.pdf HTTP/1.1" 200 - +INFO:root:2025-10-16 22:16:10.430797 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:16:10] "GET /myclass/api/Get_Stored_Downloaded_File/L1EJ8zRyR6fONWewXteNqHLcCCykXCdI-Q/pdfexemple02_20251016221551_20251016_221551_43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89.pdf HTTP/1.1" 200 - +INFO:root:2025-10-16 22:22:04.153496 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:22:04] "GET /myclass/api/Cron_Send_Mail_Queue_Message_With_Filter HTTP/1.1" 308 - +INFO:root:2025-10-16 22:22:04.162496 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:22:09] "GET /myclass/api/Cron_Send_Mail_Queue_Message_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 22:37:51.360117 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 22:37:51.360117 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 22:37:51.360117 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 22:37:51.361116 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 22:37:51.361116 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-16 22:38:00.374631 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-16 22:38:00.374631 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-16 22:38:00.374631 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-16 22:38:00.374631 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-16 22:38:00.374631 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-16 22:38:13.371028 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:38:13] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:38:47.280345 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:38:47] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:38:49.965728 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:38:49] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:39:19.189877 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:39:19] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-16 22:39:21.707771 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [16/Oct/2025 22:39:21] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:09:00.208881 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:09:00.208881 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:09:00.209882 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:09:00.209882 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:09:00.209882 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:09:09.249563 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:09:09.249563 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:09:09.250568 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:09:09.250568 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:09:09.250568 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 10:13:05.385259 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:05] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:13:07.008323 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:07.010324 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:07.012331 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:07.015330 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:07] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:07] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:13:07.028841 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:07] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:13:07.056841 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:07.058840 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:07.060840 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:07] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:13:07.062839 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:07] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:13:07.066842 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:07.068843 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:07] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:07] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:07] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:07] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:07] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:13:09.168945 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:09.170951 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:09] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:09] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:13:12.073090 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:12] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:13:21.126729 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:21.129729 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:21.131727 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:21.134733 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:21] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:13:21.146733 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:21] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:21] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:21] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:13:21.202352 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:21.203350 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:21.205352 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:21.206349 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:21.208350 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:21.210349 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:21] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:21] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:21] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:21] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:21] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:21] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:13:30.750085 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:30.752083 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:30.754115 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:30.755082 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:30.757083 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:30.760083 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:13:30.762084 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:30] "POST /myclass/api/Get_List_Manager_Ressource_Humaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:13:30.763085 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:30] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:30] "POST /myclass/api/Get_List_Profil_Ressource_Humaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:30] "POST /myclass/api/Get_Competence_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:30] "POST /myclass/api/Get_Competence_Level/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:30] "POST /myclass/api/Get_Related_Target_Collection_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:30] "POST /myclass/api/Get_List_Survey_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:13:38.996381 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:13:39] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:15:01.464174 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:01] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:15:02.941005 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:02] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:15:03.247940 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:15:03.249945 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:15:03.249945 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:03] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:15:03.257939 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:03] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:03] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:15:03.325724 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:15:03.329733 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:15:03.332731 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:03] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:03] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:03] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:15:03.562228 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:15:03.563210 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:15:03.567193 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:03] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:03] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:03] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:15:05.295399 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:15:05.296403 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:05] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:05] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:15:50.483811 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:50] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:15:50.523482 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:50] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:15:55.597105 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:55] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:15:57.706199 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:57] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:15:59.755229 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:15:59] "GET /myclass/api/Get_Stored_Downloaded_File/n3GBA0ftE_1pndv91Wyit0ee3i-Ecudsrw/CorrigeTD01_20251017101550_20251017_101550_43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89.pdf HTTP/1.1" 200 - +INFO:root:2025-10-17 10:16:12.750021 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:16:12] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:16:13.240041 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:16:13] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:22:26.050817 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:22:26.050817 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:22:26.050817 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:22:26.050817 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:22:26.050817 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:23:00.187151 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:23:00.187151 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:23:00.187151 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:23:00.187151 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:23:00.187151 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:24:32.778127 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:24:32.779126 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:24:32.779126 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:24:32.779126 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:24:32.779126 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:25:07.517358 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:25:07.518359 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:25:07.518359 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:25:07.518359 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:25:07.518359 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:25:48.509224 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:25:48.509224 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:25:48.509224 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:25:48.509224 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:25:48.509224 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:26:29.605230 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:26:29.605230 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:26:29.606233 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:26:29.606233 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:26:29.606233 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:27:23.722683 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:27:23.722683 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:27:23.722683 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:27:23.722683 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:27:23.722683 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:27:55.301085 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:27:55.301085 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:27:55.301085 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:27:55.301085 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:27:55.302085 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:29:27.839076 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:29:27.839076 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:29:27.839076 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:29:27.839076 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:29:27.839076 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 10:29:41.428476 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:29:41] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:29:42.934732 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:29:43.526241 : Get_List_User_Internal_Mail -filter must be an instance of dict, bson.son.SON, or any other type that inherits from collections.Mapping - Line : 502 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:29:43] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\prj_common.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:38:47.056057 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:38:47.057057 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:38:47.057057 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:38:47.057057 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:38:47.057057 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\prj_common.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:42:18.482774 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:42:18.482774 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:42:18.482774 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:42:18.482774 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:42:18.483392 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\prj_common.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:44:54.079250 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:44:54.080266 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:44:54.080266 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:44:54.080266 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:44:54.080266 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:45:07.885182 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:45:07.886181 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:45:07.886181 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:45:07.886181 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:45:07.886181 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 10:45:41.620138 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:45:41] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:45:42.456816 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:45:42.926159 : Get_List_User_Internal_Mail -filter must be an instance of dict, bson.son.SON, or any other type that inherits from collections.Mapping - Line : 502 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:45:42] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:47:32.879788 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:47:32.879788 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:47:32.880805 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:47:32.880805 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:47:32.880805 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 10:49:28.555310 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:49:28] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:49:29.151571 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:49:31.625906 : Get_List_User_Internal_Mail -pipeline must be a list - Line : 502 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:49:31] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:52:04.965158 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:52:04.965158 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:52:04.965158 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:52:04.965158 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:52:04.965158 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 10:52:06.400539 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:52:06] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:52:07.128791 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:52:09.485513 : Get_List_User_Internal_Mail -'CommandCursor' object has no attribute 'sort' - Line : 502 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:52:09] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:53:29.640383 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:53:29.640383 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:53:29.640383 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:53:29.640383 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:53:29.640383 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:53:44.609462 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:53:44.609462 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:53:44.609462 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:53:44.609462 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:53:44.609462 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 10:53:48.591654 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:53:48] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:53:49.256237 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 10:53:49.728188 : Get_List_User_Internal_Mail -'CommandCursor' object has no attribute 'sort' - Line : 500 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:53:49] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:54:13.954592 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:54:13.954592 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:54:13.954592 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:54:13.954592 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:54:13.954592 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 10:54:14.279918 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:54:14] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:54:14.991123 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:54:14] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 10:55:28.308443 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 10:55:28.308443 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 10:55:28.308443 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 10:55:28.308443 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 10:55:28.308443 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 10:55:31.142165 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:55:31] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:55:31.912361 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:55:31] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:55:33.648483 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:55:33] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:55:34.744149 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:55:34] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 10:55:37.745284 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 10:55:37] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:06:02.256287 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:06:02] "GET /myclass/api/Get_Stored_Downloaded_File/hRA3m6YCKiCkTbAx3DN0hX7Yy8CIDNB3PA/CorrigeTD01_20251017101550_20251017_101550_43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89.pdf HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:08:49.892968 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:08:49.893968 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:08:49.893968 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:08:49.893968 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:08:49.894981 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:09:36.581644 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:09:36.581644 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:09:36.581644 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:09:36.581644 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:09:36.581644 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:17:18.686786 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:17:18.686786 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:17:18.686786 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:17:18.686786 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:17:18.686786 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:18:14.895226 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:18:14.895226 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:18:14.895226 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:18:14.895226 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:18:14.895226 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:21:49.200277 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:21:49.200277 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:21:49.200277 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:21:49.200277 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:21:49.201276 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:21:56.753561 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:21:56.753561 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:21:56.753561 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:21:56.753561 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:21:56.753561 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:22:35.946544 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:22:35.946544 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:22:35.946544 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:22:35.946544 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:22:35.946544 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 11:34:01.970971 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:34:01.975533 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:34:01.979536 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:01] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:01] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:02] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:34:02.458151 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:34:02.461150 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:34:02.464252 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:02] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:02] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:02] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:34:51.448054 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:51] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:34:51.759721 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:34:51.762917 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:34:51.768933 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:34:51.775932 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:51] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:34:51.784935 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:51] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:51] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:51] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:51] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:34:56.978354 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:57] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:34:57.749000 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:57] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:34:58.054846 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:34:58.056860 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:58] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:34:58] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:37.769867 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:37.770871 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:37.771893 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:37.772871 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:37.774872 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:37] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:37.788869 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:37] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:37] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:37] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:37] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:37.894104 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:37] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:38.100073 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.101076 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.101076 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.102073 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:38.130110 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:38.183177 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.187189 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.192171 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.194173 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:38.196173 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.202172 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.205177 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.205177 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:38.213172 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:38.216173 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.222174 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:38.545096 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.547096 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.550117 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.553096 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:38.558175 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.561178 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:38.777644 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.780633 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.782641 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.785631 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.788633 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:38.790632 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_List_Manager_Ressource_Humaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_List_Profil_Ressource_Humaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:38.796630 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:38.797632 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_Competence_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_Competence_Level/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_List_Survey_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:38] "POST /myclass/api/Get_Related_Target_Collection_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:43.545579 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:43] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:39:43.854924 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:39:43.855923 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:43] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:39:43] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:44:20.807849 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:44:20.807849 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:44:20.807849 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:44:20.807849 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:44:20.807849 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:44:29.965625 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:44:29.965625 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:44:29.965625 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:44:29.965625 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:44:29.965625 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 11:45:51.818808 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:45:51.819805 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:45:51.821984 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:45:51] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:45:51] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:45:52.467853 : Get_Nb_User_Internal_Mail_Not_Read -the match filter must be an expression in an object, full error: {'ok': 0.0, 'errmsg': 'the match filter must be an expression in an object', 'code': 15959, 'codeName': 'Location15959'} - Line : 650 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:45:52] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:47:01.110835 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:47:01.111835 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:47:01.111835 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:47:01.111835 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:47:01.111835 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:48:07.797012 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:48:07.797012 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:48:07.798018 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:48:07.798018 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:48:07.798018 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:49:00.842732 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:49:00.842732 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:49:00.842732 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:49:00.842732 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:49:00.842732 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:50:02.304907 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:50:02.304907 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:50:02.305907 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:50:02.305907 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:50:02.305907 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 11:51:18.396595 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:51:18] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:51:19.226110 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:51:19] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:51:35.914644 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:51:35.915644 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:51:35.917949 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:51:35.921951 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:51:35.923950 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:51:35] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:51:35.950048 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:51:35] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:51:35] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:51:35] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:51:35.977582 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:51:35] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:51:35] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:51:36.258633 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:51:36.264514 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:51:36.268521 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:51:36.270519 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:51:36] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:51:36] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:51:36] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:51:36] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:51:36.291232 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:51:36] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:53:23.863951 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:53:23.863951 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:53:23.864845 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:53:23.864845 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:53:23.864845 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 11:53:41.051426 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:53:41.053426 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:53:41.054425 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:53:41.054425 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:53:41.057425 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:53:41.059423 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:53:41] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:53:41] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:53:41.072429 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:53:41] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:53:41] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:53:41] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:53:41.372228 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:53:41] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:53:41.378228 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:53:41.379227 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:53:41.379227 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:53:41] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:53:41] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:53:41] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:53:41.631261 : Get_Nb_User_Internal_Mail_Not_Read -'CommandCursor' object is not subscriptable - Line : 656 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:53:41] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:55:24.066354 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:55:24.066354 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:55:24.066354 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:55:24.066354 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:55:24.066354 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 11:55:30.530519 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:55:30.530519 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:55:30.533688 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:55:30.534694 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:55:30.536801 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:55:30.537806 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:55:30] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:55:30.543317 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:55:30] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:55:30] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:55:30] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:55:30] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:55:30] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:55:30.845916 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:55:30] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:55:30.858914 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:55:30.858914 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:55:30.860913 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:55:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:55:30] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:55:30] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:55:57.582323 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:55:57.582323 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:55:57.582323 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:55:57.582323 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:55:57.582323 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 11:55:59.038382 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:55:59.038382 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 11:55:59.040375 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:55:59] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:55:59] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:55:59] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:57:49.573548 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:57:49.573548 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:57:49.573548 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:57:49.574566 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:57:49.574566 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 11:57:51.400716 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:57:51] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:57:56.056501 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:57:56] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 11:58:42.528396 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 11:58:42.528396 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 11:58:42.528396 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 11:58:42.528396 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 11:58:42.528396 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 11:58:43.548494 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:58:43] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 11:58:46.872379 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 11:58:46] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 12:00:24.464766 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 12:00:24.464766 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 12:00:24.464766 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 12:00:24.464766 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 12:00:24.465780 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 12:00:25.456184 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:25.459183 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:25.464180 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:25.474184 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:25.479175 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:25] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:00:25.499173 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:25.506176 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:25] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:25] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:25] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:25] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:25] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:00:25.801913 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:25] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:00:25.820966 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:25.824946 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:25] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:25] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:00:25.838518 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:25.844518 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:25] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:25] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:00:29.101112 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:29.104112 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:29.108113 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:29] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:29] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:29] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:00:30.832587 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:30] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:00:40.121627 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:40.125965 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:40.128963 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:40] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:00:40.139963 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:40.141999 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:40.145963 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:40] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:40] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:00:40.161966 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:40] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:40] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:40] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:00:40.461779 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:40.463796 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:40.465781 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:40] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:40] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:00:40.480834 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:40] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:00:40.488381 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:40] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:00:42.205088 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:42] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:00:42.510220 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:00:42.511202 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:42] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:00:42] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:03:01.856493 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:03:01.858494 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:01] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:03:01.868381 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:03:01.873382 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:03:01.875433 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:03:01.884386 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:01] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:01] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:01] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:01] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:03:02.012567 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:02] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:03:02.184143 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:03:02.200451 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:03:02.205572 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:02] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:03:02.212506 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:02] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:02] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:02] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:03:02.230527 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:02] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:03:03.614213 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:03:03.620229 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:03] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:03:03.632228 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:03:03.637234 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:03] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:03:03.648614 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:03] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:03] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:03:03.760886 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:03:03.764783 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:03] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:03:03.773848 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:03:03.781785 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:03:03.789780 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:03] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:03] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:03:03] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:05:24.585839 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:05:24.590847 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:05:24.598847 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:05:24] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:05:24.610801 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:05:24.613799 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:05:24] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:05:24] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:05:24] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:05:24.663026 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:05:24.666041 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:05:24] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:05:24] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:05:24.929916 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:05:24.931927 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:05:24.934487 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:05:24] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:05:24] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:05:24.947499 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:05:24] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:05:24] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:05:26.286738 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:05:26] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:05:26.591778 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:05:26.594753 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:05:26] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:05:26] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:05:28.899770 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:05:28] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:06:53.470796 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:06:53.471809 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:06:53.473809 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:06:53.480820 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:06:53] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:06:53.491834 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:06:53.501836 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:06:53] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:06:53] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:06:53] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:06:53] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:06:53.736800 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:06:53] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:06:53.864790 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:06:53.865812 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:06:53.868823 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:06:53.872832 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:06:53.875837 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:06:53] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:06:53] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:06:53] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:06:53] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:06:53] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:10.032709 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:10.034709 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:10.039712 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:10.044713 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:10] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:10] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:10.062805 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:10] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:10] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:10.397984 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:10.404984 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:10] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:10.413535 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:10.421549 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:10.430551 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:10] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:10] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:10] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:10.547659 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:10.549647 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:10] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:10.561188 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:10.568954 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:10.573955 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:10] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:10] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:10] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:33.214118 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:33.217120 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:33.221117 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:33] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:33.232125 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:33.241433 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:33] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:33] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:33.250880 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:33] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:33.253881 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:33] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:33] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:33.551693 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:33.555725 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:33.557755 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:33] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:33.572291 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:33] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:33] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:33] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:37.415091 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:37] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:37.732940 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:07:37.738953 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:37] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:37] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:42.827552 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:42] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:43.095620 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:43] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:55.937489 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:55] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:07:56.279503 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:07:56] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 12:08:28.196144 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 12:08:28.196144 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 12:08:28.196144 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 12:08:28.196144 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 12:08:28.196144 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 12:08:47.543602 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 12:08:47.543602 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 12:08:47.543602 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 12:08:47.543602 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 12:08:47.543602 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 12:10:57.822724 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:10:57.822724 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:10:57.825708 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:10:57] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:10:57] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:10:57] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:12:51.032930 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:12:51.037031 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:12:51.039942 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:12:51.040940 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:12:51.041942 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:51] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:51] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:12:51.055093 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:51] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:51] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:12:51.072245 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:51] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:51] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:12:51.370685 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:12:51.371685 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:12:51.372682 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:12:51.375686 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:12:51.386235 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:51] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:51] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:51] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:51] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:51] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:12:53.202696 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:53] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:12:53.508995 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:12:53.511005 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:53] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:53] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:12:55.265320 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:55] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:12:55.517654 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:55] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:12:55.597174 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:12:55] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:13:11.131680 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:13:11.133678 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:13:11.134679 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:13:11] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:13:11] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:13:11] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:13:13.708276 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:13:13] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:13:14.453154 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:13:14] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:13:16.407027 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:13:16] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:13:21.214265 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:13:21] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:13:35.539723 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:13:35] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:13:40.227648 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:13:40] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 12:15:07.887222 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 12:15:07.888231 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 12:15:07.888231 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 12:15:07.888231 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 12:15:07.888231 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 12:15:28.915328 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:28.917329 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:28.917329 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:28.918325 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:28.921349 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:28.922596 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:28] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:15:28.933602 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:28] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:28] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:28] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:28] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:28] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:15:29.245728 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:29.246727 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:29.250852 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:29] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:29] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:29] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:15:29.262424 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:29.263407 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:29] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:15:31.927985 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:31.930005 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:31.932986 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:31] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:31] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:31] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:15:34.785706 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:34] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:15:35.134751 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:35.140765 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:35] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:35] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:15:41.213536 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:41] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:15:41.532672 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:41.534671 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:41.538672 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:41.539673 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:41] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:15:41.553698 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:41.553698 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:41] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:41] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:41] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:41] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:15:41.572763 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:41] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:15:41.856011 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:41] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:15:41.868014 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:41.869992 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:41.873992 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:41] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:41] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:41] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:15:44.029427 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:44.033688 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:15:44.037680 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:44] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:44] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:15:44] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:16:01.786384 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:01] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:16:02.100633 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:16:02.104134 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:16:02.108150 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:02] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:16:02.115133 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:16:02.121139 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:16:02.124155 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:16:02.128172 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:02] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:02] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:02] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:02] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:02] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:16:02.428570 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:02] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:16:02.442884 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:16:02.445884 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:16:02.448882 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:02] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:02] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:02] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:16:06.035828 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:16:06.036829 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:16:06.038828 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:06] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:06] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:06] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:16:14.073807 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:14] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:16:14.424388 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:16:14.425393 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:14] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:14] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 12:16:35.140242 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 12:16:35.141225 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 12:16:35.141225 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 12:16:35.141225 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 12:16:35.141225 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 12:16:42.998440 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:16:43.000453 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:16:43.001453 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:43] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:43] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:43] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:16:43.045971 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:16:43.050981 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:16:43.055969 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:43] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:43] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:16:43] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:17:00.196769 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:00] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:17:00.500471 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:17:00.504506 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:17:00.506498 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:00] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:17:00.512486 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:17:00.532550 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:00] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:00] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:00] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:17:00.561535 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:17:00.564079 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:00] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:00] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:17:00.831467 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:00] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:17:00.846450 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:17:00.849455 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:17:00.853462 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:00] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:00] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:00] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:17:02.167709 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:17:02.170722 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:17:02.173709 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:02] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:02] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:02] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:17:04.176956 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:04] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:17:04.520401 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:17:04.524956 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:04] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:04] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:17:14.639676 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:14] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:17:14.973492 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:17:14.978481 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:14] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:17:14] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:18:13.778369 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:18:13] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:18:14.089515 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:18:14.092510 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:18:14.095512 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:18:14.099500 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:18:14] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:18:14.116513 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:18:14] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:18:14] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:18:14] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:18:14.148087 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:18:14.148087 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:18:14] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:18:14] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:18:14.430118 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:18:14.434125 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:18:14.437123 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:18:14.442124 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:18:14] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:18:14] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:18:14] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:18:14] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:18:16.416686 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:18:16.419680 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:18:16.422680 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:18:16] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:18:16] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:18:16] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:19:31.986703 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:19:31.990701 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:19:31.998687 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:19:31.999686 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:19:32] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:19:32.017707 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:19:32] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:19:32.037735 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:19:32.044702 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:19:32] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:19:32] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:19:32] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:19:32] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:19:32.331682 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:19:32.346689 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:19:32] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:19:32.354681 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:19:32.357668 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:19:32] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:19:32.367695 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:19:32] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:19:32] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:19:32] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:19:33.991193 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:19:33] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:19:34.302049 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:19:34.305046 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:19:34] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:19:34] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:12.786637 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:22:12.788652 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:22:12.791641 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:12] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:12] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:12] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:13.150507 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:22:13.154520 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:22:13.161508 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:13] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:13] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:13] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:25.397850 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:25] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:25.701579 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:22:25.705594 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:25] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:25] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:25.832764 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:22:25.836757 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:22:25.840780 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:25] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:25] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:25] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:31.797404 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:22:31.797404 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:22:31.798928 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:22:31.806959 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:31] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:31.819980 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:22:31.826943 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:31] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:31] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:31] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:31.843944 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:31] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:31] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:32.140996 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:22:32.142012 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:22:32.143006 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:32] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:32.158445 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:32] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:32] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:32.166930 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:32] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:32] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:33.292568 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:33] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:33.600881 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:22:33.602913 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:33] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:33] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:38.425968 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:38] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:38.698693 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:38] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:22:38.741805 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:22:38] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 12:24:22.914970 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 12:24:22.914970 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 12:24:22.914970 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 12:24:22.914970 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 12:24:22.915971 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 12:24:57.963460 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:24:57.964460 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:24:57.965461 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:24:57.971460 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:24:57.976578 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:24:57.983461 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:24:57] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:24:58] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:24:58] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:24:58] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:24:58] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:24:58] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:25:06.426851 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:25:06] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:25:08.538151 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:25:08] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:25:15.813522 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:25:15] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:25:28.492087 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:25:28] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:25:29.532362 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:25:29] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:26:40.070061 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:40.071062 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:40.073061 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:40.074580 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:40.074580 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:40] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:26:40.080579 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:40] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:40] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:40] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:26:40.100580 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:40] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:40] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:26:40.383567 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:40] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:26:40.391566 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:40.392566 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:40.394568 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:40] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:40] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:26:40.415861 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:40] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:26:41.055269 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:41.057269 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:41.058268 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:41.060273 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:26:41.064275 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:41.068286 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:26:41.117959 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:41.119465 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:26:41.128054 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:41.131054 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:41.137071 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:26:41.260201 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:41.264216 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:41.268217 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:41.273216 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:41.278388 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:26:41.286392 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:41] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:26:45.148747 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:45] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:26:45.459556 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:26:45.462820 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:45] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:26:45] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:27:27.750090 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:27:27.751090 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:27:27] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:27:27] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:22.472353 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:22] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:22.775001 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:22] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:26.207334 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:26.208357 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:26.208357 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:26.209334 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:26.209334 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/get_List_domaine_formation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/Get_Suggested_Fr_Cities/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/Get_Suggested_Word/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/get_all_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:26.469465 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:26.652179 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:26.655596 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:26.657609 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:26.658594 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:26.662647 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:26.787610 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:26.977325 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:26.979626 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:26.981626 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:26.984644 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:26.985626 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:26] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:27.098359 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:27.305249 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:27.306274 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:27.307252 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:27.308274 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:27.309267 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:27.423813 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:27.633978 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:27.635013 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:27.636994 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:27.639012 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:27.643989 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:27.740011 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:27.959450 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:27.960450 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:27.960450 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:27.961449 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:27.961449 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:27] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.741364 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:29.743367 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:29.743367 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:29.744364 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:29.745363 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/get_List_domaine_formation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/Get_Suggested_Fr_Cities/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/Get_Suggested_Word/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/get_all_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.880957 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:29.882958 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.883958 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.885958 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.887958 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.889958 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.890958 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.893463 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:29.896470 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.898468 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:29.899469 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.902469 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.905469 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.909468 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:29.912471 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.919469 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.921468 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:29.924469 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.926468 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.928468 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.931469 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:29.933472 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.936467 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.940469 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:29.942470 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.946475 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:29.948469 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:29.951469 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:29.952471 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:29.955468 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:29] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:46.917448 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:46] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:46.971034 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:46.973034 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:46.975035 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:46.977034 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:46] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:46.981032 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:46.986034 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:46] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:46] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:46] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:47] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:47.032130 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:47.034133 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:47.036131 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:47.039133 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:47] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:47] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:47.042132 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:47] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:47.046134 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:47] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:47] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:47] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:28:49.876435 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:28:49.877435 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:49] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:28:49] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:29:45.289699 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:29:45.291705 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:29:45] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:29:45] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:29:59.444321 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:29:59.446324 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:29:59] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:29:59] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:30:28.941573 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:30:28.945575 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:30:28.948574 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:30:28.950574 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:30:28.952573 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:28] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:28] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:30:28.961574 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:28] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:28] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:28] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:30:28.988572 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:30:28.990573 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:30:28.991574 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:30:28.994573 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:30:28.997575 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:30:28.999576 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:28] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:29] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:29] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:29] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:29] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:30:30.751461 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:30:30.752460 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:30] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:30] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:30:47.394670 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:30:47.395675 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:30:47.398163 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:30:47.403165 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:47] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:47] "POST /myclass/api/getRecodedParnterImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:47] "POST /myclass/api/Get_List_Theme_Catalog_Pub/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:30:56.376182 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:30:56.377181 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:56] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:30:56] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:33:41.955651 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:33:41.960161 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:33:41] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:33:41] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:36:24.627264 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:36:24.630260 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:24] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:24] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:36:32.637069 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:36:32.637069 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:36:32.642072 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:36:32.643068 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:32] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:36:32.648074 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:36:32.654073 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:32] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:32] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:32] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:36:32.682657 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:36:32.684655 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:36:32.685655 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:36:32.687658 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:36:32.689694 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:32] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:32] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:32] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:32] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:36:32.699655 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:32] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:32] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:32] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:36:33.909704 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:36:33.910729 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:33] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:33] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:36:59.648552 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:36:59.650553 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:59] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:36:59] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:37:06.390834 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:37:06] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:37:09.325912 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:37:09] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:38:44.222533 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:38:44.223529 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:38:44] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:38:44] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:38:48.938112 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:38:48] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:38:49.011112 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:38:49.012115 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:38:49] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:38:49] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:38:52.351566 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:38:52] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:38:55.242916 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:38:55] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:39:47.903379 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:39:47] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:39:47.934944 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:39:47] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:39:54.302559 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:39:54] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:39:55.061438 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:39:55] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:39:57.972870 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:39:57] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:39:58.058952 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:39:58.059951 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:39:58] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:39:58] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:40:45.387109 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:45] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:40:45.638963 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:45] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:40:45.796434 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:40:45.798464 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:40:45.800445 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:40:45.801444 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:40:45.806443 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:45] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:45] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:45] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:40:45.821986 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:45] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:45] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:40:45.995496 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:46] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:40:46.117602 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:46] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:40:46.127578 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:40:46.127578 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:40:46.128609 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:46] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:46] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:46] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:40:49.353954 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:40:49.357499 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:49] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:49] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:40:51.881539 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:51] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:40:52.249202 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:40:52.251296 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:52] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:40:52] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:41:43.415364 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:41:43] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:41:43.573165 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:41:43.576161 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:41:43] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:41:43] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:41:43.721105 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:41:43] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:41:45.566538 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:41:45] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:41:46.957691 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:41:46] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:41:49.830099 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:41:49] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:42:00.902910 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:42:00] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:42:45.506181 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:42:45.509696 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:42:45] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:42:45] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:42:45.733896 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:42:45.736896 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:42:45] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:42:45] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:43:25.420762 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:25] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:43:25.725433 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:25] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:43:25.827966 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:43:25.832966 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:25] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:25] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:43:41.687878 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:41] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:43:41.731944 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:41] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:43:50.279069 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:43:50.281086 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:43:50.286075 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:43:50.288085 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:43:50.292617 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:50] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:50] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:43:50.313080 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:50] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:50] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:43:50.339708 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:50] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:50] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:43:50.606757 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:43:50.623221 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:43:50.626775 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:50] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:43:50.631978 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:50] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:50] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:50] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:43:50.650575 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:43:50] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:44:01.475164 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:44:01] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:44:01.781765 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:44:01] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:44:12.671684 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:44:12] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:44:12.917813 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:44:12] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:44:12.996782 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:44:13] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:44:15.072096 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:44:15] "GET /myclass/api/Get_Stored_Downloaded_File/_e2G-Tx9g4FNLJyBhGdlRUL_HZGbD9pQIg/CorrigeTD01_20251017124341_20251017_124341_43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89.pdf HTTP/1.1" 200 - +INFO:root:2025-10-17 12:45:15.888969 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:45:15.889964 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:15] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:15] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:45:16.557644 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:45:16.561641 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:16] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:16] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:45:20.244754 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:20] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:45:20.550528 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:45:20.556525 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:20] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:45:20.567510 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:45:20.573511 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:45:20.585510 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:20] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:20] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:20] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:45:20.611549 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:45:20.615062 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:20] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:20] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:45:20.877801 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:20] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:45:20.894809 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:45:20.898809 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:45:20.905339 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:20] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:20] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:20] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:45:22.314542 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:45:22.317705 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:22] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:22] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:45:23.257625 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:23] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:45:23.602367 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:45:23.604366 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:23] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:45:23] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:46:27.410667 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:46:27.415714 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:27] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:27] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:46:27.750496 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:27] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:46:27.763496 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:27] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:46:32.903485 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:32] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:46:33.243273 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:46:33.250381 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:33] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:33] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:46:37.097239 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:37] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:46:37.434639 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:46:37.435638 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:37] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:37] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:46:39.832937 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:39] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:46:40.165844 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:46:40.171830 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:40] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:40] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:46:51.497042 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:51] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:46:51.834767 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:46:51.836767 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:51] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:46:51] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:47:45.841578 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:47:45.846576 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:47:45.850598 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:47:45.855613 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:47:45.858630 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:45] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:45] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:47:45.880196 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:45] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:45] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:47:45.903180 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:47:45.907176 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:47:45.912181 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:47:45.917195 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:45] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:47:45.927202 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:45] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:45] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:47:45.937178 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:45] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:45] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:45] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:45] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:47:49.456058 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:47:49.459078 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:47:49.462094 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:49] "POST /myclass/api/getRecodedParnterImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:49] "POST /myclass/api/Get_List_Theme_Catalog_Pub/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:47:49.497189 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:49] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:47:52.429990 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:47:52.431991 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:52] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:47:52] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:48:10.710359 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:48:10.711348 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:10] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:48:10.724389 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:48:10.728371 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:48:10.737934 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:48:10.747924 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:10] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:10] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:10] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:10] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:48:10.787959 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:10] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:48:11.040095 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:48:11.057092 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:11] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:48:11.063094 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:11] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:48:11.074084 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:11] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:48:11.081117 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:11] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:11] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:48:28.891402 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:28] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:48:28.936412 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:48:28.942399 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:28] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:28] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:48:52.445430 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:48:52.449942 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:48:52.452941 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:48:52.455945 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:48:52.459945 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:52] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:52] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:48:52.474945 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:52] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:52] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:48:52.488941 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:48:52.490940 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:48:52.496942 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:48:52.500942 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:52] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:48:52.508942 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:52] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:52] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:52] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:48:52.517940 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:52] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:52] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:48:52] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:00.452900 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:00] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:00.763372 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:00.766889 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:00.769903 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:00] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:00.785489 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:00] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:00] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:00.811490 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:00.814490 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:00.817490 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:00] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:00] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:00] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:01.093640 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:01.096623 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:01] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:01] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:01.109626 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:01] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:04.998439 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:05.003454 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:05.008454 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:05.016456 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:05] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:05] "POST /myclass/api/getRecodedParnterImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:05] "POST /myclass/api/Get_List_Theme_Catalog_Pub/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:09.916784 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:09] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:10.226969 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:10] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:11.762552 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:11] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:12.033203 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:12] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:12.093028 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:12] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:26.957944 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:26.960945 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:26] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:26] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:33.733581 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:33] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:34.046911 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:34.048342 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:34.050349 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:34.053353 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:34] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:34] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:34] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:34.080475 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:34] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:34.084493 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:34] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:34.096487 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:34] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:34.393506 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:34.396520 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:34.398519 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:34.404539 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:34] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:34] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:34] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:34] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:35.611544 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:35.613556 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:35] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:35] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:37.448951 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:37] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:37.793925 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:37.796927 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:37] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:37] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:55.190600 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:55] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:55.503976 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:55.505977 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:55.506976 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:55.512478 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:55] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:55.526514 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:55] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:55] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:55.538483 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:root:2025-10-17 12:49:55.545485 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:55] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:55] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:55] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:49:55.850588 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:55.855590 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:55.858589 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:49:55.862146 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:55] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:55] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:55] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:49:55] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:04.299610 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:04.303099 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:04] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:04] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:05.959799 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:05] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:06.304668 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:06.306659 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:06] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:06] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:13.797282 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:13] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:14.102515 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:14.106530 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:14.108530 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:14.114534 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:14] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:14.130525 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:14] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:14] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:14.133953 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:14] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:14] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:14.163293 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:14] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:14.430033 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:14] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:14.446045 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:14.451281 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:14.455296 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:14] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:14] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:14] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:19.351676 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:19.356675 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:19.357675 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:19.362676 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:19] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:19.368676 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:19] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:19] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:19.382681 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:19] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:19.397735 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:19.399735 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:19.404764 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:19.410940 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:19] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:19.417455 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:19] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:19.423451 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:19] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:19] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:19] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:19] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:19] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:20.683418 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:20.685383 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:20] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:20] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:22.113558 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:22] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:22.156554 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:22.159538 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:22] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:22] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 12:50:37.329350 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 12:50:37.332380 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:37] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 12:50:37] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 15:06:27.575557 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 15:06:27.575557 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 15:06:27.575557 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 15:06:27.575557 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 15:06:27.575557 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 15:06:33.681666 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 15:06:33.681666 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 15:06:33.681666 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 15:06:33.681666 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 15:06:33.681666 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 15:08:33.551388 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:33] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:08:34.355566 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:08:34.372085 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:08:34.381086 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:08:34.395083 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:08:34.410081 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:08:34.424083 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:34] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:08:34.426083 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:34] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:08:34.436083 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:34] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:08:34.453087 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:34] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:34] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:34] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:08:34.463603 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:08:34.477110 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:08:34.485135 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:34] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:34] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:34] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:34] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:34] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:08:37.111303 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:08:37.114284 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:37] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:37] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:08:40.060692 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:40] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:08:40.116303 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:08:40.120273 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:40] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:08:40] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:22:56.606069 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:22:56.610076 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:22:56] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:22:56] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:24:08.330918 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:24:08.334916 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:24:08] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:24:08] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:24:24.627446 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:24:24.632447 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:24:24] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:24:24] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:24:29.307368 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:24:29] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:24:29.366365 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:24:29.369363 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:24:29] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:24:29] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:25:44.345424 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:25:44.346423 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:25:44] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:25:44] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:25:47.707775 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:25:47] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:25:47.777119 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:25:47.780119 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:25:47] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:25:47] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:26:55.813440 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:26:55] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:26:55.873462 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:26:55] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:30:51.247304 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:30:51.254320 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:30:51] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:30:51] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:32:09.588914 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:32:09.593432 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:32:09] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:32:09] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:32:15.120490 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:32:15.124482 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:32:15] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:32:15] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 15:35:03.140150 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 15:35:03.141133 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 15:35:03.141133 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 15:35:03.141133 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 15:35:03.141133 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 15:35:08.753504 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:35:08] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:35:08.783503 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:35:08.786503 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:35:08] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:35:08] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:36:07.908800 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:36:07.912800 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:36:07] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:36:07] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:36:47.484292 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:36:47] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:36:47.561168 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:36:47.562166 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:36:47] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:36:47] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:39:15.437158 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:39:15.442158 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:39:15] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:39:15] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:39:45.976506 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:39:45.981500 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:39:45] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:39:45] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:41:02.669963 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:41:02] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:41:02.760516 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:41:02.761518 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:41:02] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:41:02] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:41:42.918357 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:41:42] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:41:42.959478 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:41:42.960483 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:41:42] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:41:42] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:43:04.240121 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:43:04] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:43:36.715020 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:43:36.719003 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:43:36] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:43:36] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:43:38.334468 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:43:38] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:43:50.246509 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:43:50] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:43:50.286522 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:43:50] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 15:44:50.246131 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 15:44:50.247118 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 15:44:50.247118 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 15:44:50.247118 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 15:44:50.247118 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 15:44:50.710065 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:44:50] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:44:56.487324 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:44:56] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:44:56.528842 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:44:56] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:45:14.702046 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:14] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:45:14.758305 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:45:14.760305 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:14] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:14] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:45:19.416673 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:19] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:45:26.767293 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:26] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:45:26.807787 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:26] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:45:46.368074 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:45:46.371072 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:45:46.374075 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:46] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:45:46.380109 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:45:46.384075 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:45:46.391076 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:46] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:46] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:46] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:46] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:45:46.426591 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:45:46.429592 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:45:46.432590 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:45:46.437593 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:45:46.438593 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:46] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:45:46.444592 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:46] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:46] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:46] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:46] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:46] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:45:48.375976 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:45:48.378978 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:48] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:48] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:45:50.317058 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:50] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:45:50.368579 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:45:50.371581 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:50] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:45:50] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:46:34.075866 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:46:34.076896 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:46:34] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:46:34] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:46:45.401345 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:46:47.181115 : Update_Message_To_Internal_Mail Aucun destinataire n'est précisé +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:46:47] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:48:42.749507 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:48:42.754501 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:42] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:42] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:48:51.009842 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:51] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:48:51.097385 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:48:51.100387 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:51] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:51] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:48:59.682195 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:48:59.684700 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:48:59.688706 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:59] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:48:59.695710 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:48:59.698707 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:48:59.702706 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:59] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:59] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:59] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:48:59.731707 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:48:59.734706 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:48:59.737707 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:48:59.739708 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:59] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:59] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:48:59.748709 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:48:59.753706 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:59] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:59] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:59] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:59] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:48:59] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:49:01.338422 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:49:01.341398 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:49:01] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:49:01] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:49:02.533544 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:49:02] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:49:02.594044 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:49:02.597044 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:49:02] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:49:02] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:49:20.015913 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:49:20.019913 : Update_Message_To_Internal_Mail Aucun destinataire n'est précisé +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:49:20] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:49:45.179402 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:49:45.184403 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:49:45] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:49:45] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:49:54.018536 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:49:54.024556 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:49:54] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:49:54] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:49:57.925007 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:49:57] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:49:57.998063 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:49:58.001032 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:49:58] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:49:58] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:50:04.978689 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:04] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:50:05.023302 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:05] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:50:22.900862 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:50:22.904864 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:50:22.907381 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:50:22.911381 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:50:22.911381 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:22] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:22] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:22] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:50:22.931386 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:22] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:50:22.953939 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:50:22.956945 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:50:22.960945 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:22] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:50:22.967947 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:50:22.972455 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:50:22.977456 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:22] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:22] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:22] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:22] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:22] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:23] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:50:24.521955 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:50:24.524952 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:24] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:50:24] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:51:01.151312 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:51:01.160334 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:51:01] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:51:01] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:51:55.923903 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:51:55.929892 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:51:55] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:51:55] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:52:03.685456 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:52:03] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:52:03.748516 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:52:03.749514 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:52:03] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:52:03] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:52:06.759910 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:52:06] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:52:26.833500 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:52:26] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:52:26.898015 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:52:26] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:53:14.536336 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:53:14.542378 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:14] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:53:14.556893 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:53:14.566893 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:53:14.571893 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:14] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:53:14.577892 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:14] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:14] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:53:14.592891 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:53:14.601892 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:14] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:14] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:53:14.613893 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:14] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:14] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:53:14.629890 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:53:14.643897 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:14] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:14] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:53:14.656420 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:14] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:53:16.396158 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:53:16.399160 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:16] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:16] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:53:24.134962 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:24] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:53:24.214529 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:53:24.216546 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:24] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:24] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:53:29.110948 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:29] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:53:29.141932 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:53:29.145457 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:29] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:53:29] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 15:59:31.957282 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 15:59:31.962281 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:59:31] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 15:59:31] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:00:04.600173 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:00:04.608160 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:04] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:04] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:00:20.627442 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:00:20.634148 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:20] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:20] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:00:37.544636 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:00:37.550638 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:00:37.560635 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:37] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:00:37.569641 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:00:37.578147 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:37] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:00:37.591152 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:00:37.591152 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:37] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:37] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:37] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:00:37.610159 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:37] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:00:37.623678 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:37] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:00:37.632191 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:37] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:00:37.641190 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:37] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:00:37.648191 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:37] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:00:37] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:01:01.069270 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:01:01.071270 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:01] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:01] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:01:05.058413 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:05] "POST /myclass/api/Delete_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:01:05.085395 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:01:05.088397 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:05] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:05] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:01:07.909205 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:07] "POST /myclass/api/Delete_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:01:07.935296 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:01:07.937384 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:07] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:07] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:01:11.757757 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:11] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:01:37.735663 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:37] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:01:37.776528 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:01:37.777555 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:37] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:37] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:01:41.668854 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:41] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:01:46.910739 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:46] "POST /myclass/api/Delete_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:01:46.965256 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:01:46.967306 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:46] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:46] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:01:50.678302 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:50] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:01:51.837064 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:01:51] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:30.179925 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:30] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:30.984190 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:31] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:31.290412 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:31.294009 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:31.298009 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:31] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:31.310022 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:31] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:31.336082 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:31] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:31] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:31.342097 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:31.345930 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:31] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:31] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:31.619064 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:31] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:31.648641 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:31.651641 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:31.653641 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:31] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:31] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:31] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:33.366404 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:33.370426 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:33] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:33] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:35.089592 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:35] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:35.442036 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:35.444020 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:35] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:35] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:38.170819 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:38] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:49.280507 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:49] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:49.547364 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:49] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:49.605642 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:49] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:56.504808 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:56.507807 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:56.511808 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:56] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:56.519810 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:56.528811 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:56.530809 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:56] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:56] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:56] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:56.555845 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:56.562819 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:56.567820 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:56] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:56.582958 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:56] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:56] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:56.592962 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:56.598964 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:56] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:56] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:56] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:02:58.178447 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:02:58.182443 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:58] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:02:58] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:03:00.716187 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:03:00] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:03:00.783197 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:03:00.786214 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:03:00] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:03:00] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:04:39.210105 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:04:39.213875 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:39] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:39] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:04:39.670554 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:04:39.674554 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:39] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:39] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:04:42.406622 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:42] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:04:45.805390 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:45] "POST /myclass/api/Delete_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:04:45.833017 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:04:45.834017 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:45] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:45] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:04:50.791057 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:50] "POST /myclass/api/Delete_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:04:50.843279 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:04:50.844279 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:50] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:50] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:04:57.361615 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:57] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:04:57.671119 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:04:57.676143 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:04:57.680146 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:57] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:04:57.687138 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:04:57.703138 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:57] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:57] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:57] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:04:57.719230 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:04:57.722272 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:57] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:57] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:04:58.001077 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:58] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:04:58.014063 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:04:58.017093 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:04:58.020089 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:58] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:58] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:58] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:04:58.786310 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:04:58.791323 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:58] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:04:58] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:05:02.512751 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:05:02] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:05:02.852746 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:05:02.855182 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:05:02] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:05:02] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:05:05.114305 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:05:05] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:05:10.783386 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:05:10] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:05:11.031435 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:05:11] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:05:11.105822 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:05:11] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:05:22.114252 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:05:22] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:05:29.742952 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:05:29] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:06:01.222470 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:01] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:06:04.924873 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:04] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:06:05.240984 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:06:05.245985 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:06:05.250983 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:05] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:05] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:05] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:06:22.526502 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:22] "POST /myclass/api/Delete_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:06:22.604017 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:22] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:06:28.452897 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:28] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:06:30.948579 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:30] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:06:31.025786 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:06:31.028802 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:31] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:31] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:06:33.743135 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:33] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:06:38.582077 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:38] "POST /myclass/api/Delete_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:06:38.619070 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:38] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:06:55.892234 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:55] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:06:55.964922 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:06:55.964922 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:55] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:55] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:06:59.032267 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:06:59] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:07:19.031373 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:07:19] "POST /myclass/api/Delete_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:07:19.098888 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:07:19] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:14:47.172617 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:14:47.177617 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:14:47] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:14:47] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:17:57.503958 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:17:57.507958 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:17:57] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:17:57] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:18:10.014804 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:18:10] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:18:12.422950 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:18:12] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:18:16.550869 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:18:16] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:18:18.981143 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:18:18] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:18:19.910682 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:18:19] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:18:21.461986 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:18:21] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:18:22.221088 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:18:22] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:18:23.075886 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:18:23] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:18:24.700596 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:18:24] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:19:57.477505 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:19:57.479533 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:19:57] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:19:57] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:21:02.091746 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:21:02] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:21:10.316915 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:21:10.321936 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:21:10] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:21:10] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:17.785345 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:22:17.787344 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:22:17.790345 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:17] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:17.797345 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:22:17.795344 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:22:17.805346 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:17] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:17] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:17] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:17.825347 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:22:17.827345 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:22:17.831373 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:17.839389 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:17] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:17.843352 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:17] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:17.849350 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:17] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:17] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:17] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:17] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:22.114436 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:22:22.115490 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:22] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:22] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:24.028773 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:24] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:25.495079 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:25] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:26.606303 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:26] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:28.685121 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:28] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:31.359938 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:31] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:32.494020 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:32] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:33.505593 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:33] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:34.285987 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:34] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:35.278077 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:35] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:36.620921 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:36] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:38.901632 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:38] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:40.678059 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:40] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:41.645393 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:41] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:22:58.654828 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:22:58.656849 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:58] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:22:58] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:23:43.529496 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:23:43.531498 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:23:43] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:23:43] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\internal_email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 16:25:04.296479 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 16:25:04.296479 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 16:25:04.296479 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 16:25:04.296479 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 16:25:04.296479 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 16:25:10.356857 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:10] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:25:10.395483 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:25:10.397481 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:10] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:10] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:25:12.406400 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:12] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:25:19.838648 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:19] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:25:19.880158 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:25:19.881271 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:19] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:19] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:25:38.629658 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:25:38.631614 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:25:38.635612 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:38] "POST /myclass/api/Get_List_Theme_Catalog_Pub/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:38] "POST /myclass/api/getRecodedParnterImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:25:38.666907 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:38] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:25:47.043097 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:25:47.044121 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:25:47.045120 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:25:47.048155 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:25:47.052152 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:47] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:25:47.078536 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:47] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:47] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:47] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:25:47.095535 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:47] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:47] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:25:47.385819 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:25:47.386827 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:25:47.400824 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:47] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:25:47.407839 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:25:47.412867 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:47] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:47] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:47] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:47] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:25:48.539793 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:48] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:25:48.857599 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:25:48] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:26:01.307444 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:01] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:26:01.579575 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:01] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:26:01.636041 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:01] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:26:04.418809 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:04] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:26:18.957898 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:18] "POST /myclass/api/Update_Message_To_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:26:19.225931 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:19] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:26:19.284418 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:19] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:26:32.882086 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:32] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:26:33.194448 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:26:33.197576 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:26:33.199576 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:26:33.205578 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:33] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:33] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:26:33.227562 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:33] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:33] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:26:33.230560 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:33] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:26:33.236532 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:33] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:26:33.538653 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:26:33.541654 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:26:33.545646 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:26:33.548648 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:33] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:33] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:33] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:33] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:26:34.642849 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:26:34.644848 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:34] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:26:34] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:27:07.967353 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:27:07] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:27:08.277586 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:27:08] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:27:24.217152 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:27:24.221152 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:27:24] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:27:24] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:27:45.895458 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:27:45] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:27:46.207775 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:27:46] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:27:49.944852 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:27:49] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:28:32.919736 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:28:32] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:28:33.232808 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:28:33] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:28:45.198355 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:28:45.201516 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:28:45] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:28:45] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:28:50.801745 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:28:50] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:28:53.830574 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:28:53] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:28:55.121184 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:28:55] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:28:55.503720 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:28:55.506468 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:28:55] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:28:55] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:31:05.186808 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:31:05.188766 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:31:05] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:31:05] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:31:32.877683 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:31:32] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:31:33.190762 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:31:33] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:31:49.641687 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:31:49.641687 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:31:49] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:31:49] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:32:01.192667 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:32:01.196666 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:32:01] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:32:01] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:32:02.316278 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:32:02] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:32:02.369935 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:32:02.372936 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:32:02] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:32:02] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:33:47.205635 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:33:47.208533 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:33:47] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:33:47] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:33:47.605792 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:33:47.609778 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:33:47] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:33:47] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:33:59.657814 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:33:59] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:33:59.994609 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:33:59.996608 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:34:00] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:34:00] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:34:01.832953 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:34:01] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:34:02.174269 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:34:02.175280 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:34:02] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:34:02] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:38:23.186929 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:38:23.188434 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:38:23] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:38:23] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:38:23.485212 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:38:23] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:38:23.502221 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:38:23] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:38:50.889654 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:38:50] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:38:51.196965 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:38:51] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:38:51.224182 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:38:51.229397 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:38:51] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:38:51] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:40:12.196043 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:40:12.200552 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:40:12] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:40:12] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:40:12.231566 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:40:12.234553 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:40:12] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:40:12] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:41:24.196073 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:41:24.198067 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:41:24] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:41:24] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:41:24.648387 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:41:24.652900 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:41:24] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:41:24] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:42:10.806777 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:42:10.811775 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:10] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:10] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:42:11.220353 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:42:11.221353 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:11] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:11] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:42:13.915689 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:13] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:42:14.242537 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:14] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:42:14.702498 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:42:14.707499 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:14] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:14] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:42:41.741575 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:42:41.744569 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:41] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:41] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:42:41.901620 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:41] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:42:42.205562 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:42] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:42:44.389901 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:44] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:42:44.439255 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:42:44.441269 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:44] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:42:44] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:43:18.222834 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:43:18.225849 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:18] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:18] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:43:18.647725 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:43:18.651726 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:18] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:18] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:43:46.938305 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:46] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:43:47.258186 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:47] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:43:47.533036 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:43:47.537037 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:47] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:47] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:43:49.845743 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:49] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:43:49.902177 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:43:49.904180 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:49] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:49] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:43:55.112642 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:55] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:43:56.118059 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:56] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:43:56.175911 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:43:56.179911 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:56] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:43:56] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:44:02.102230 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:02] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:44:02.149224 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:44:02.152225 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:02] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:02] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:44:04.598212 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:04] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:44:04.625195 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:44:04.628214 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:04] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:04] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:44:25.261429 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:44:25.264498 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:25] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:25] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:44:25.946115 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:44:25.951021 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:25] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:25] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:44:28.270337 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:28] "POST /myclass/api/Get_Given_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:44:28.326337 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:44:28.328336 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:28] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:28] "POST /myclass/api/Get_List_Internal_Mail_Sent_By_User/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:44:40.790965 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:44:40.792960 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:44:40.794962 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:44:40.800020 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:44:40.805021 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:40] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:44:40.819020 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:40] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:40] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:40] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:44:40.842018 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:44:40.845019 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:44:40.849018 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:44:40.854017 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:44:40.861018 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:40] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:40] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:40] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:44:40.872019 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:40] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:40] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:40] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:44:44.010714 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:44:44.013696 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:44] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:44:44] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:19.877604 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:19.881127 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:19.882120 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:19.884632 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:19.885639 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:19] "POST /myclass/api/get_List_domaine_formation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:19] "POST /myclass/api/Get_Suggested_Fr_Cities/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/Get_Suggested_Word/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/get_all_class/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.150688 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:20.157043 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.158054 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.164591 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:20.166604 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.172679 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.180335 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:20.182845 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.190377 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.195900 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.200412 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:20.203929 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.210452 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.220492 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.231562 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.238049 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:20.242627 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.246635 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.252681 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.257961 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.265005 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.269501 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.274023 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.278024 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.284556 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:20.289564 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:20.291083 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:20.301142 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:20.304666 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:20.307655 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:24.279824 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:24] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:24.334048 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:24.338511 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:24.342686 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:24.347642 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:24.350387 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:24] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:24.365974 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:24] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:24] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:24] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:24.376225 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:24.379224 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:24.384744 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:24.392788 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:24.399314 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:24] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:24] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:24.411720 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:24] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:24] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:24] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:24] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:24] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:32.025629 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:32.028625 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:32.032659 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:32.037306 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:32] "POST /myclass/api/Get_List_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:32.044826 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:32.046157 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:32] "POST /myclass/api/Get_List_Groupe_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:32] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:32.059395 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:32.065335 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:32] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:32] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:32] "POST /myclass/api/Get_CRM_List_Opportunite_Etape/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:32.073871 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:55:32.079895 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:32] "POST /myclass/api/Get_List_base_document_automatic_setup/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:32] "POST /myclass/api/Get_Competence_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:32] "POST /myclass/api/Get_List_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:32] "POST /myclass/api/Get_List_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:55:33.623017 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:55:33] "POST /myclass/api/Get_List_Message_To_Mail_Queue/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:56:16.397612 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 16:56:16.401124 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:56:16] "POST /myclass/api/Get_List_User_Internal_Mail/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:56:16] "POST /myclass/api/Get_List_Internal_Destinataire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 16:56:20.555624 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 16:56:20] "POST /myclass/api/Create_Empty_Internal_Mail/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:30:21.433707 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:30:21.438363 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:30:21.440371 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:30:21.447399 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:30:21.452542 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:30:21] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:30:21.463589 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:30:21] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:30:21.475542 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:30:21] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:30:21] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:30:21] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:30:21.481643 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:30:21.485958 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:30:21] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:30:21.495004 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:30:21] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:30:21.502522 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:30:21.508712 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:30:21] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:30:21] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:30:21] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:30:21] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:30:22] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:31:25.955782 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:31:25.959482 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:31:25.962194 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:31:25.965734 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:31:25.972278 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:31:25.975728 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:31:25] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:31:25.985121 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:31:25] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:31:25] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:31:25] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:31:25] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:31:25] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:31:25] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:31:28.978969 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:31:28.984525 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:31:28] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:31:30] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:33:46.910823 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:33:46.913826 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:33:46.917337 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:33:46.922898 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:33:46.930531 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:33:46.933471 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:33:46] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:33:46.947140 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:33:46] "POST /myclass/api/Get_Given_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:33:46.957522 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:33:46.964398 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:33:46] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:33:46.977449 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:33:46] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:33:46] "POST /myclass/api/Get_List_Partner_Produit_Service/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:33:47] "POST /myclass/api/Get_List_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:33:47] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:33:47] "POST /myclass/api/Get_List_Partner_Order_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:33:47] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:33:48] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:33:52.649542 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:33:52.653547 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:33:52] "POST /myclass/api/Get_List_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:33:52] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:33:58.943884 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:33:58] "POST /myclass/api/Get_Given_Partner_Client_From_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:34:05.540516 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:34:05] "POST /myclass/api/Add_Partner_Quotation/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:34:05.667337 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:34:05] "POST /myclass/api/Get_List_Partner_Order_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:34:07.782415 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:34:07.786418 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:34:07] "POST /myclass/api/Get_Given_Partner_Order/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:34:07] "POST /myclass/api/Get_Given_Partner_Order_Lines/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:34:13.016041 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:34:13] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:34:31.255479 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:34:31] "POST /myclass/api/get_Class_From_Internal_Url/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:34:33.873541 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:34:33] "POST /myclass/api/get_Class_From_Internal_Url/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:16.664680 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:16.667187 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:16.671782 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:16.678986 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:16] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:16.710398 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:16] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:16] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:16] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:16.755756 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:16.761358 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:16.763413 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:16.773720 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:16.788729 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:16] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:16] "POST /myclass/api/Get_Given_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:16.805437 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:16.821538 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:16] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:16.841811 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:16.845813 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:16] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:16.872674 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:16] "POST /myclass/api/Get_List_Partner_Produit_Service/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:16] "POST /myclass/api/Get_List_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:16] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:17] "POST /myclass/api/Get_List_Partner_Order_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:17] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:19] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:21.032816 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:21.035824 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:21.039866 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:21.046278 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:21] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:21] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:21.054805 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:21] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:21.062563 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:21] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:21.070115 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:21] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:21.077154 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:21] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:21.083808 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:21] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:21.091460 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:21.093470 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:21.097470 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:21] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:21] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:21] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:21] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:22] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:25.207448 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:25.209965 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:25.214600 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:25.215607 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:25.223130 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:25] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:25] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:25] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:25.235451 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:25.240702 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:25] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:25] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:25] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:25] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:36:28.880056 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:36:28.883572 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:28] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:36:30] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:42:12.919931 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 17:42:12.923453 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:42:12] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:42:12] "POST /myclass/api/Get_List_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:42:17.622537 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:42:18] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 17:43:18.872536 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 17:43:18] "POST /myclass/api/get_Class_From_Internal_Url/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:23.390965 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:23] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:24.359512 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:24.366044 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:24.373040 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:24.384054 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:24.392059 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:24] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:24] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:24] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:24.427953 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:24.433467 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:24.442509 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:24] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:24.455547 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:24.466001 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:24] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:24.480002 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:24] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:24.503003 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:24] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:24] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:24] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:24] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:24] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:27.112623 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:27.120611 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:27.122616 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:27.135612 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:27] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:27] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:27.154618 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:27] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:27.163619 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:27.177123 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:27.190124 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:27] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:27] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:27] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:27.208127 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:27] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:27.221126 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:27.233138 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:27] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:27.252142 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:27] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:27] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:27] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:29] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:43.005532 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:43.020517 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:43] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:43.051509 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:43.064504 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:43] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:43.087562 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:43] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:43.111188 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:43] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:43.143198 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:43] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:43] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:43] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:57.815566 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:57.822595 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:57.825596 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:20:57.847120 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:57] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:57.859113 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:57] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:57] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-10-17 20:20:57.877126 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:57] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:57] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:20:58] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:14.813949 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:14.820963 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:14.828963 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:14.832040 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:14] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:14] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:14.853032 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:14.861999 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:14] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:14] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:14.875596 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:14] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:14] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:14] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:17.009357 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:17.011440 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:17.016363 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:17.026479 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:17.035383 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:17.043409 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:17] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:17] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:17] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:17] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:17] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:34.173921 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:34.176391 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:34.181549 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:34.188546 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:34.200546 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:34.289747 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:34.292187 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:34.295752 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:34.299761 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:34.305068 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:34.310563 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:34.324581 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:34.328579 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:34.337580 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:34.344095 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:34.349099 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:34.360101 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:34] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:36] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:38.190828 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:38.194314 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:38.198429 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:38.201678 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:38.210587 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:38] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:38.218580 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:38.227582 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:38] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:38] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:38.236584 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:38] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:38] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:38] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:38] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:38] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:44.526274 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:44.532338 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:44.535341 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:44] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:44] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:44] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:47.053898 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:47] "POST /myclass/api/Get_List_note_evaluation_Ressource_Affectation/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:48.094195 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:48] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:52.362531 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:52.366791 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:21:52.369905 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:52] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:52] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:52] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:21:54.164972 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:21:54] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:22:10.564291 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:10] "POST /myclass/api/GetAllValideSessionPartner_List_filter_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:22:16.655353 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:22:16.658076 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:22:16.662585 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:22:16.666650 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:22:16.669334 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:16] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:22:16.676414 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:16] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:16] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:22:16.685480 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:16] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:16] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:16] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:16] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:22:19.075919 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:22:19.079428 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:22:19.082436 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:22:19.086529 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:22:19.091528 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:22:19.098834 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:19] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:19] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:19] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:19] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:19] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:19] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:22:37.462004 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n

BULLETIN DE NOTE

\n\n

 

\n

 

\n\n\n \n\n \n\n \n\n \n\n \n \n\n \n
\n \n Photo
\n
part nom5_client   part 5
\n Né(e) le \n
 
\n\n\n

 

\n

Note par matičre / UE  

\n\n \n \n \n \n Credit\n \n Rang\n \n Moy. El\n \n Moy. Ens.\n \n Validé\n \n \n \n \n \n \n \n \n \n \n \n\n \n\n \n\n \n \n \n \n \n \n \n \n \n \n\n \n\n \n\n \n \n \n \n \n \n \n \n \n \n\n \n\n \n\n \n \n \n \n \n
Matičre /\n UE\n Graphe
INITIATION A LA PROGRAMMATION5036.39\n 7.36\n \n Non \n \n
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.0\n 0.0\n \n Non \n \n
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.0\n 0.0\n \n Non \n \n
\n

 

\n

 

\n\n

Note générale  

\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n \n
RangMoy. ElValidéObservation
3\n 2.13 1Indulgeance du Jury
\n\n\n\n

 

\n\n

Imprimé le : 17/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_404.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 10% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '10%', '10%', '10%', '10%', 150.0] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:22:40] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-17 20:53:06.344514 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:53:06.347407 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:53:06.351408 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:53:06.353407 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:06] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:06] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:53:06.369413 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:06] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:06] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:53:06.395442 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:53:06.397443 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:53:06.401445 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:53:06.406444 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:53:06.409441 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:06] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:53:06.415443 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:53:06.422443 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:06] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:06] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:06] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:06] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:53:06.437445 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:06] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:06] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:06] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:53:14.263080 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:14] "POST /myclass/api/Get_Personnalisable_Collection/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:53:14.264204 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:14] "POST /myclass/api/Get_List_Partner_Document_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:53:32.950790 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n

BULLETIN DE NOTE

\n\n

 

\n

 

\n\n\n \n\n \n\n \n\n \n\n \n \n\n \n
\n \n Photo
\n
part nom5_client   part 5
\n Né(e) le \n
 
\n\n\n

 

\n

Note par matičre / UE  

\n\n \n \n \n \n Credit\n \n Rang\n \n Moy. El\n \n Moy. Ens.\n \n Validé\n \n \n \n \n \n \n \n \n \n \n \n\n \n\n \n\n \n \n \n \n \n \n \n \n \n \n\n \n\n \n\n \n \n \n \n \n \n \n \n \n \n\n \n\n \n\n \n \n \n \n \n
Matičre /\n UE\n Graphe
INITIATION A LA PROGRAMMATION5036.39\n 7.36\n \n Non \n \n
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.0\n 0.0\n \n Non \n \n
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.0\n 0.0\n \n Non \n \n
\n

 

\n

 

\n\n

Note générale  

\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n \n
RangMoy. ElValidéObservation
3\n 2.13 1Indulgeance du Jury
\n\n\n\n

 

\n\n

Imprimé le : 17/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_255.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 10% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '10%', '10%', '10%', '10%', 150.0] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:53:34] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-17 20:55:05.736421 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:55:05] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:55:07.209815 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:55:07.210819 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:55:07] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:55:07] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 20:58:02.786102 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 20:58:02.787118 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 20:58:02.787118 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 20:58:02.787118 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 20:58:02.787118 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 20:58:21.744072 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:58:21] "POST /myclass/api/Add_Update_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:58:21.803144 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 20:58:21.804177 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:58:21] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:58:21] "POST /myclass/api/GetAllValideSessionPartner_List_filter_like/ HTTP/1.1" 200 - +INFO:root:2025-10-17 20:59:24.949799 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 20:59:24] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:03:12.097363 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:03:12] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:03:12.144373 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:03:12] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:03:19.002538 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:03:19.004538 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:03:19.007537 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:03:19.010539 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:03:19.021537 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:03:19.027539 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:03:19] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:03:19] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:03:19] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:03:19] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:03:19] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:03:19] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:03:26.863119 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n

BULLETIN DE NOTE

\n

Entrée Scolaire:

\n

Promotion :

\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom6_client   part 6
Né(e) le 03/06/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UECreditRangMoy. ElMoy. Ens.ValidéGraphe
INITIATION A LA PROGRAMMATION5018.787.36 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.00.0 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.00.0 Non
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
12.931sdfdsfds
\n

 

\n

Imprimé le : 17/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom6_client_part 6_061.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 10% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '10%', '10%', '10%', '10%', 150.0] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:03:28] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106be266de5f7fd519f4 HTTP/1.1" 200 - +INFO:root:2025-10-17 21:04:05.160475 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:04:05.164487 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:04:05] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:04:05] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:04:09.277464 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:04:09.280359 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:04:09] "POST /myclass/api/Get_Personnalisable_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:04:09] "POST /myclass/api/Get_List_Partner_Document_Super_Admin_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:04:15.855689 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:04:15] "POST /myclass/api/Get_List_Partner_Document_with_filter_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:04:22.318313 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:04:22.321330 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:04:22] "POST /myclass/api/Get_Given_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:04:22] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:04:30.146239 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:04:30.147227 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:04:30] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:04:30] "POST /myclass/api/Get_Given_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:04:32.964214 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:04:32] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:04:39.187735 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:04:39] "POST /myclass/api/Update_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:04:39.230062 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:04:39] "POST /myclass/api/Get_Given_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:04:47.397598 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n

BULLETIN DE NOTE

\n

Entrée Scolaire:

\n

Promotion :

\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom6_client   part 6
Né(e) le 03/06/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UECreditRangMoy. ElMoy. Ens.ValidéGraphe
INITIATION A LA PROGRAMMATION5018.787.36 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.00.0 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.00.0 Non
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
12.931sdfdsfds
\n

 

\n

Imprimé le : 17/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom6_client_part 6_226.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 10% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '10%', '10%', '10%', '10%', 150.0] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:04:48] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106be266de5f7fd519f4 HTTP/1.1" 200 - +INFO:root:2025-10-17 21:05:07.758203 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:05:07] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:05:29.293401 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:05:29] "POST /myclass/api/Update_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:05:29.381108 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:05:29] "POST /myclass/api/Get_Given_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:05:35.871296 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n

BULLETIN DE NOTE

\n

Entrée Scolaire:

\n

Promotion :

\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom6_client   part 6
Né(e) le 03/06/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UECreditRangMoy. ElMoy. Ens.ValidéGraphe
INITIATION A LA PROGRAMMATION5018.787.36 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.00.0 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.00.0 Non
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
12.931sdfdsfds
\n

 

\n

Imprimé le : 17/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom6_client_part 6_397.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 10% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '10%', '10%', '10%', '10%', 150.0] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:05:37] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106be266de5f7fd519f4 HTTP/1.1" 200 - +INFO:root:2025-10-17 21:06:00.195888 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:06:00] "POST /myclass/api/Get_Given_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:06:00.241500 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:06:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:06:02.840651 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:06:02] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:06:33.547766 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:06:33] "POST /myclass/api/Update_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:06:33.588881 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:06:33] "POST /myclass/api/Get_Given_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:06:41.357539 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire:
Promotion :
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom6_client   part 6
Né(e) le 03/06/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UECreditRangMoy. ElMoy. Ens.ValidéGraphe
INITIATION A LA PROGRAMMATION5018.787.36 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.00.0 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.00.0 Non
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
12.931sdfdsfds
\n

 

\n

Imprimé le : 17/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom6_client_part 6_928.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 10% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '10%', '10%', '10%', '10%', 150.0] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:06:42] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106be266de5f7fd519f4 HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 21:08:09.710064 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 21:08:09.710064 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 21:08:09.710064 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 21:08:09.710064 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 21:08:09.710064 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 21:08:29.119483 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire:
Promotion :
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom6_client   part 6
Né(e) le 03/06/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UECreditRangMoy. ElMoy. Ens.ValidéGraphe
INITIATION A LA PROGRAMMATION5018.787.36 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.00.0 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.00.0 Non
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
12.931sdfdsfds
\n

 

\n

Imprimé le : 17/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom6_client_part 6_947.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 10% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '10%', '10%', '10%', '10%', 150.0] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:08:30] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106be266de5f7fd519f4 HTTP/1.1" 200 - +INFO:root:2025-10-17 21:10:45.411826 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:10:45] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:11:45.270338 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:11:45] "POST /myclass/api/Update_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:11:45.311190 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:11:45] "POST /myclass/api/Get_Given_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:11:53.516843 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom6_client   part 6
Né(e) le 03/06/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UECreditRangMoy. ElMoy. Ens.ValidéGraphe
INITIATION A LA PROGRAMMATION5018.787.36 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.00.0 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.00.0 Non
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
12.931sdfdsfds
\n

 

\n

Imprimé le : 17/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom6_client_part 6_193.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 10% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '10%', '10%', '10%', '10%', 150.0] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:11:54] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106be266de5f7fd519f4 HTTP/1.1" 200 - +INFO:root:2025-10-17 21:12:57.076286 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:12:57.077286 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:12:57.081287 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:12:57.085287 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:12:57] "POST /myclass/api/Get_List_Jury/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:12:57] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:12:57] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:12:57] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:12:59.200376 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:12:59.204375 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:12:59.208376 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:12:59] "POST /myclass/api/Get_Given_Jury_With_Members/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:12:59] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class_From_Session_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:12:59] "POST /myclass/api/Get_List_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:13:10.218825 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:10.221824 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:10] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:13:10.227824 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:10.231824 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:10.238829 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:10] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:10] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:10] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:13:10.265394 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:10.267411 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:10.270394 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:10.273393 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:10.279412 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:10.285409 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:10] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:13:10.292396 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:10] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:13:10.302394 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:10] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:10] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:10] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:10] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:10] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:10] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:13:32.295157 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:32.297608 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:32.298608 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:32.302136 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:32] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:32] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:32] "POST /myclass/api/Get_List_Jury/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:32] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:13:41.531179 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:41.536178 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:41.538176 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:41] "POST /myclass/api/Get_Given_Jury_With_Members/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:41] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class_From_Session_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:41] "POST /myclass/api/Get_List_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:13:49.643138 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:49.648136 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:49.651140 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:49] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:13:49.661139 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:49.674143 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:49] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:49] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:49] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:13:49.942344 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:49.946325 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:49.951325 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:49.957331 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:49.962336 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:49] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:13:49.977365 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:49] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:49] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:49] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:13:49.991331 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:49] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:13:49.996329 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:50] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:50] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:13:50] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:13:59.988232 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:59.991233 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:59.992233 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:13:59.997234 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:14:00] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:14:00] "POST /myclass/api/Get_List_Jury/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:14:00] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:14:00] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:14:19.754875 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:14:19] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class_From_Session_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:14:34.632916 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:14:34] "POST /myclass/api/Add_Jury/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:14:34.682454 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:14:34] "POST /myclass/api/Get_List_Jury/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:14:37.527041 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:14:37.531039 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:14:37.534037 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:14:37] "POST /myclass/api/Get_Given_Jury_With_Members/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:14:37] "POST /myclass/api/Get_List_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:14:37] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class_From_Session_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:16:50.586472 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:16:50.588478 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:16:50.592203 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:16:50.597223 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:16:50] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:16:50] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:16:50] "POST /myclass/api/Get_List_Jury/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:16:50] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:17:42.167579 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:17:42] "POST /myclass/api/Update_Jury/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:17:42.240692 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:17:42.244570 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:17:42.248567 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:17:42] "POST /myclass/api/Get_Given_Jury_With_Members/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:17:42] "POST /myclass/api/Get_List_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:17:42] "POST /myclass/api/Get_List_Jury/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:17:48.612067 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:17:48] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:17:52.003893 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:17:52] "POST /myclass/api/Get_Insription_From_Session_id_Reduice_Fields_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:18:33.837830 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:18:33] "POST /myclass/api/Add_Update_Apprenant_To_Jury/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:18:33.931351 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:18:33.935350 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:18:33] "POST /myclass/api/Get_List_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:18:33] "POST /myclass/api/Get_Given_Jury_Apprenant_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:18:41.283404 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:18:41.285404 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:18:41] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:18:41] "POST /myclass/api/Get_Given_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:18:45.297204 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:18:45.301221 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:18:45.305239 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:18:45.311204 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:18:45.317204 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:18:45.322205 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:18:45] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:18:45] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:18:45] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:18:45] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:18:45] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:18:45] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:19:50.414121 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:19:50] "POST /myclass/api/Add_Update_Inscrit_Juy_Promo_Decision/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:19:50.472122 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:19:50] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-10-17 21:20:06.649914 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:20:06] "POST /myclass/api/Add_Update_Inscrit_Juy_Promo_Decision/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:20:06.738428 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:20:06] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-10-17 21:20:30.421209 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:20:30] "POST /myclass/api/Add_Update_Inscrit_Juy_Promo_Decision/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:20:30.473982 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:20:30] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-10-17 21:21:05.216601 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:21:05] "POST /myclass/api/Add_Update_Inscrit_Juy_Promo_Decision/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:21:05.273236 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:21:05] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-10-17 21:21:12.766358 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:21:12.769357 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:21:12.773357 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:21:12.774358 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:21:12.780357 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:21:12.785357 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:21:12] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:21:12] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:21:12] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:21:12] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:21:12] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:21:13] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:23:26.141611 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UECreditRangMoy. ElMoy. Ens.ValidéGraphe
INITIATION A LA PROGRAMMATION5036.397.36 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.00.0 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.00.0 Non
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 17/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_406.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 10% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '10%', '10%', '10%', '10%', 150.0] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:23:27] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-17 21:24:13.655953 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:24:13.659331 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:24:13] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:24:13] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-10-17 21:25:51.349062 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:25:51] "POST /myclass/api/Add_Update_UE_Jury_Observation/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:25:51.476889 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:25:51] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-10-17 21:26:04.243525 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:26:04] "POST /myclass/api/Add_Update_UE_Jury_Observation/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:26:04.349948 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:26:04] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-10-17 21:26:17.424698 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:26:17] "POST /myclass/api/Add_Update_UE_Jury_Observation/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:26:17.519640 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:26:17] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-10-17 21:32:40.365527 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UECreditRangMoy. ElMoy. Ens.ValidéGraphe
INITIATION A LA PROGRAMMATION5036.397.36 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.00.0 Non
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.00.0 Non
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 17/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_347.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 10% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 10% +DEBUG:xhtml2pdf.tables:Col 5 has width 10% +DEBUG:xhtml2pdf.tables:Col 6 has width 200px +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '10%', '10%', '10%', '10%', 150.0] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:32:41] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-17 21:33:55.864625 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:33:55.865647 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:33:55] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:33:55] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-10-17 21:35:18.424492 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:35:18] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:37:45.284283 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:37:45] "POST /myclass/api/Update_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:37:45.325360 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:37:45] "POST /myclass/api/Get_Given_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:38:02.839756 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +INFO:root:2025-10-17 21:38:07.337580 : Create_Bulletin_By_Inscrit_PDF -unexpected char '&' at 4148 - Line : 3095 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:38:07] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106ae266de5f7fd519ea HTTP/1.1" 500 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-17 21:39:23.655470 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-17 21:39:23.655470 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-17 21:39:23.655470 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-17 21:39:23.656470 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-17 21:39:23.656470 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-17 21:39:29.532497 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:39:29] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:39:53.731421 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:39:53] "POST /myclass/api/Update_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:39:53.778772 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:39:53] "POST /myclass/api/Get_Given_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:40:05.648298 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UECreditRangMoy. ElMoy. Ens.ValidéGrapheObservation
INITIATION A LA PROGRAMMATION5036.397.36 Non dddd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.00.0 Non dddd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.00.0 Non dddd
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 17/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_502.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +WARNING:xhtml2pdf.util:getSize: Not a float '7.51315%' +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col widths: ['34.6356%', '11.6454%', '9.46657%', '9.69196%', '10.5184%', '9.3163%', '7.51315%', '7.58828%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:40:07] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-17 21:43:20.487832 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:43:20] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:43:28.992814 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:43:29] "POST /myclass/api/Update_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:43:29.062140 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:43:29] "POST /myclass/api/Get_Given_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:43:43.956700 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UECreditRangMoy. ElMoy. Ens.ValidéGrapheObservation
INITIATION A LA PROGRAMMATION5036.397.36 Non 3
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.00.0 Non 1
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.00.0 Non 1
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 17/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_313.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col widths: ['34.6356%', '11.6454%', '9.46657%', '9.69196%', '10.5184%', '9.3163%', '7.51315%', '7.58828%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:43:45] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-17 21:44:24.329763 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:44:24] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:44:41.266645 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:44:41] "POST /myclass/api/Update_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:44:41.336756 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:44:41] "POST /myclass/api/Get_Given_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:44:50.411804 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UECreditRangMoy. ElMoy. Ens.ValidéGrapheObservation
INITIATION A LA PROGRAMMATION5036.397.36 Non a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.00.0 Non okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.00.0 Non doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 17/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_455.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col widths: ['34.6356%', '11.6454%', '9.46657%', '9.69196%', '10.5184%', '9.3163%', '7.51315%', '7.58828%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:44:51] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-17 21:52:09.198224 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:52:09.201195 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:52:09.204224 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:52:09] "POST /myclass/api/Get_Given_Jury_With_Members/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:52:09] "POST /myclass/api/Get_List_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:52:09] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class_From_Session_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:56:14.567652 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:14] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:56:17.382867 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:56:17.385867 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:17] "POST /myclass/api/Get_Given_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:17] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:56:22.707069 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:56:22.709067 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:22] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:22] "POST /myclass/api/Get_Given_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:56:24.420930 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:56:24.421931 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:56:24.426933 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:56:24.429942 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:56:24.436944 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:56:24.443446 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:24] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:24] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:24] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:24] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:24] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:25] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:56:33.176628 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:56:33.177628 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:33] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:33] "POST /myclass/api/Get_Given_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:root:2025-10-17 21:56:41.795165 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 21:56:41.796164 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:41] "POST /myclass/api/Get_Given_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 21:56:41] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-17 22:04:39.454845 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-17 22:04:39.455844 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 22:04:39] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 22:04:39] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-10-17 22:11:24.028944 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UECreditRangMoy. ElMoy. Ens.ValidéGrapheObservation
INITIATION A LA PROGRAMMATION5036.397.36 Non a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.00.0 Non okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.00.0 Non doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 17/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_595.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col widths: ['34.6356%', '11.6454%', '9.46657%', '9.69196%', '10.5184%', '9.3163%', '7.51315%', '7.58828%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [17/Oct/2025 22:11:25] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/kQpidvNlrbxO_Wetuq2QtF4WMubfrYy-6g/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 09:22:52.204901 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 09:22:52.204901 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 09:22:52.204901 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 09:22:52.205901 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 09:22:52.205901 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 09:23:49.789398 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 09:23:49.790396 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 09:23:49.790396 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 09:23:49.790396 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 09:23:49.790396 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 09:27:22.307017 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:22] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:23.303550 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:23.304550 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:23.309550 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:23.313550 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:23] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:23.321556 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:23] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:23.339063 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:23] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:23] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:23.350062 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:23.353063 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:23.356063 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:23] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:23.361070 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:23.367064 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:23] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:23] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:23.378229 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:23] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:23] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:23] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:23] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:26.962030 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:26.963030 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:26.972033 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:26.978035 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:26] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:26.982034 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:26.987063 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:26.991576 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:26] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:26.996574 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:27] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:27] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:27] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:27.013616 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:27] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:27] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:27.022584 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:27.026584 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:27.033089 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:27] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:27] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:27] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:27] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:28] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:33.077735 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:33.081258 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:33.083257 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:33.087256 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:33] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:33] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:33.097257 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:33.099263 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:33] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:33.107362 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:33] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:33] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:33] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:33] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:38.621916 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:38] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:40.837682 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:40] "POST /myclass/api/Get_Financial_Caracteristique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:41.516656 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:41.517659 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:41.522670 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:41.526225 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:41.532224 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:41] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:41.536232 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:41] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:41] "POST /myclass/api/Get_List_Survey_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:41] "POST /myclass/api/Get_List_Survey_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:41] "POST /myclass/api/Get_List_Survey_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:41] "POST /myclass/api/Get_List_Specific_Survey_Internal_Code/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:43.202300 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:43.204300 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:43.209299 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:43.212300 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:43.219301 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:27:43.230299 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:43] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:43] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:43] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:43] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:43] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:43] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:27:51.593351 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UECreditRangMoy. ElMoy. Ens.ValidéGrapheObservation
INITIATION A LA PROGRAMMATION5036.397.36 Non a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 15010.00.0 Non okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210010.00.0 Non doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_988.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +WARNING:xhtml2pdf.util:getSize: Not a float '7.51315%' +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col 0 has width 34.6356% +DEBUG:xhtml2pdf.tables:Col 1 has width 11.6454% +DEBUG:xhtml2pdf.tables:Col 2 has width 9.46657% +DEBUG:xhtml2pdf.tables:Col 3 has width 9.69196% +DEBUG:xhtml2pdf.tables:Col 4 has width 10.5184% +DEBUG:xhtml2pdf.tables:Col 5 has width 9.3163% +DEBUG:xhtml2pdf.tables:Col 6 has width 7.51315% +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:xhtml2pdf.tables:Col 7 has width 7.58828% +DEBUG:xhtml2pdf.tables:Col widths: ['34.6356%', '11.6454%', '9.46657%', '9.69196%', '10.5184%', '9.3163%', '7.51315%', '7.58828%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 58 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 111 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 132 8166 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:27:53] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 09:29:59.541166 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:29:59.544165 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:29:59.549639 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:29:59.554641 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:29:59.563044 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:29:59.633495 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:29:59.639481 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:29:59.650479 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:29:59.660480 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:29:59.667504 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:29:59.677011 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:29:59.686021 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:29:59.696018 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:29:59.706020 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:29:59.722037 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:29:59.737019 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:29:59.755038 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:29:59] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:30:01] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:30:08.856769 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:30:08] "POST /myclass/api/Get_Personnalisable_Collection/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:30:08.859786 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:30:08] "POST /myclass/api/Get_List_Partner_Document_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:30:19.534508 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:30:19] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:30:20.781359 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 09:30:20.784351 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:30:20] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:30:20] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:31:06.733006 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:31:06] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:42:08.816939 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:42:08] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:42:08.867747 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:42:08] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:42:12.921419 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_684.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col widths: ['40%', '5%', '5%', '5%', '45%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:42:15] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 09:45:38.649499 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:45:38] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:45:47.977251 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:45:47] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:45:48.047750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:45:48] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:46:03.239186 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE - ii
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_092.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col widths: ['40%', '5%', '5%', '5%', '45%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:46:04] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 09:49:54.102650 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:49:54] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:50:02.849701 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:50:02] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:50:02.915270 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:50:02] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:50:08.622866 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_242.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col widths: ['40%', '5%', '5%', '5%', '45%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:50:09] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 09:51:34.576566 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:51:34] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:51:40.714396 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:51:40] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:51:40.760418 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:51:40] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:51:44.395754 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_159.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col widths: ['40%', '5%', '5%', '5%', '45%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:51:45] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 09:52:03.187995 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:52:03] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:53:29.000994 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:53:29] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:53:29.048056 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:53:29] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:53:33.204019 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_252.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col widths: ['40%', '5%', '5%', '5%', '45%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:53:34] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 09:54:36.776908 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:54:36] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:54:40.815548 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:54:40] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:54:40.861190 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:54:40] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:54:56.854186 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_524.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col 0 has width 40% +DEBUG:xhtml2pdf.tables:Col 1 has width 5% +DEBUG:xhtml2pdf.tables:Col 2 has width 5% +DEBUG:xhtml2pdf.tables:Col 3 has width 5% +DEBUG:xhtml2pdf.tables:Col 4 has width 45% +DEBUG:xhtml2pdf.tables:Col widths: ['40%', '5%', '5%', '5%', '45%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:54:57] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 09:56:35.655677 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:56:35] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:56:41.670133 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:56:41] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:56:41.716716 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:56:41] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 09:56:46.341867 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_623.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:56:47] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 09:57:03.992575 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 09:57:04] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:00:47.304313 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:00:47] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:00:47.371707 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:00:47] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:00:51.838433 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_963.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:00:53] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 10:01:37.376676 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:01:37] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:03:04.417325 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:03:04] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:03:04.467373 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:03:04] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:03:07.677279 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_368.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:03:09] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 10:04:12.272522 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:04:12] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:04:18.597267 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:04:18] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:04:18.646042 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:04:18] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:04:23.749679 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_558.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:04:25] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 10:05:34.828960 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:05:34] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:05:44.193450 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:05:44] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:05:44.262422 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:05:44] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:06:06.758868 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_334.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:06:07] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 10:08:29.998395 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:08:30] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:08:34.432019 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:08:34] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:08:34.479533 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:08:34] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:08:38.030305 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
Photo
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_963.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:08:39] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 10:10:31.193971 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:10:31] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:10:35.696026 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:10:35] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:10:35.741887 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:10:35] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:10:39.798137 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n

part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_845.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:10:41] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 10:11:30.520859 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:11:30] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:11:35.903076 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:11:35] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:11:35.951137 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:11:35] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:11:39.733950 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n

part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_789.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:11:40] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 10:12:33.649165 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:12:33] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:12:40.215330 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:12:40] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:12:40.262840 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:12:40] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:12:44.821095 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n

part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_025.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:12:46] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 10:13:37.634897 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:13:37] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:13:46.433812 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:13:46] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:13:46.498814 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:13:46] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:13:52.095997 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n

part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_046.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:root:2025-10-18 10:13:54.859289 : Create_Bulletin_By_Inscrit_PDF -Invalid color value 'rebeccapurple' - Line : 3108 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:13:54] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 500 - +INFO:root:2025-10-18 10:14:40.697574 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:14:40] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:14:45.607169 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:14:45] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:14:45.650673 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:14:45] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:14:48.062045 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n

part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_818.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:14:49] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 10:17:17.033121 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:17:17] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:17:22.184484 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:17:22] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:17:22.226035 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:17:22] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:17:25.829262 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n

part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_906.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:17:26] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 10:18:54.033085 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:18:54] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:18:58.071173 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:18:58] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:18:58.114554 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:18:58] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:19:01.046123 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n

part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_988.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:02] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 10:19:40.605443 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:40.607443 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:40.611443 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:40.615444 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:19:40.628443 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:19:40.674516 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:40.676516 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:40.679517 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:19:40.686999 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:40.689006 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:40.689006 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:40.693007 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:19:40.703004 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:40.707006 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:19:40.718005 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:40.722006 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:19:40.738036 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:40] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:41] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:19:44.934658 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:44.935657 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:44.939161 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:44.946190 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:44.949188 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:44] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:19:44.953188 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:44] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:19:44.962191 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:44] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:44] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:19:44.973198 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:19:44.979702 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:44] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:19:44.987735 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:44] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:45] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:45] "POST /myclass/api/Get_List_Partner_Apprenant/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:45] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:45] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:19:59.023736 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:19:59] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:20:19.403975 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:20:19] "POST /myclass/api/Get_Apprenant_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\apprenant_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 10:22:08.197511 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 10:22:08.197511 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 10:22:08.197511 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 10:22:08.197511 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 10:22:08.197511 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 10:22:08.254639 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:22:08] "POST /myclass/api/Get_Apprenant_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 10:23:28.893461 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 10:23:28.893461 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 10:23:28.893461 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 10:23:28.893461 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 10:23:28.893461 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 10:23:30.965878 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:23:31.012440 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:23:31.052446 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:23:31.084126 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:23:31.120019 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:23:31] "POST /myclass/api/Get_Apprenant_Recorded_Image_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:23:31.168049 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:23:31.199031 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:23:31] "POST /myclass/api/Get_Given_Apprenant_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:23:31] "POST /myclass/api/Get_Apprenant_Recorded_Image_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:23:31] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:23:31] "POST /myclass/api/Get_List_Suivi_Pedagogique_No_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:23:32] "POST /myclass/api/Get_List_Apprenant_Notes_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:23:33] "POST /myclass/api/Get_Apprenant_List_Inscription/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:23:54.166364 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:23:54] "POST /myclass/api/Add_Update_Apprenant_Image/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:24:11.721773 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:24:11.744126 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:24:11] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-10-18 10:24:11.772617 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 10:24:11.801719 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:24:11] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:24:11] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:24:11] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:24:11.827611 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:24:11] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:24:11.850654 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:24:14] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:24:16.198938 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_262.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 65458 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 65458 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:24:25] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 10:25:42.830315 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:25:42] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:25:49.999155 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:25:50] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:25:50.045156 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:25:50] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:25:54.789125 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_168.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 65458 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 65458 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:25:56] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 10:26:29.681163 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_817.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col 4 has width 3.75 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col 4 has width 3.75 +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', 3.75] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:26:36] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:root:2025-10-18 10:27:21.132707 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n

part nom6_client   part 6
Né(e) le 03/06/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION18.787.36 Faible 0110
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 excellent travail
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
12.931iiiiiiiii
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom6_client_part 6_731.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col 4 has width 3.75 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', 3.75] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:27:28] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106be266de5f7fd519f4 HTTP/1.1" 200 - +INFO:root:2025-10-18 10:27:55.576360 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
part nom5_client   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION36.397.36 a encourager - 17/10
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0 okkk 17/1000
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 doit redoubler d\'effort
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
32.131Indulgeance du Jury - 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom5_client_part 5_303.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 65458 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 65458 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:28:02] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519ea HTTP/1.1" 200 - +INFO:root:2025-10-18 10:31:04.093048 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:31:04] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:31:17.552596 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:31:17] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:31:17.623950 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:31:17] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:31:22.359882 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n

part nom6_client   part 6
Né(e) le 03/06/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION18.787.36 Faible 0110
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0 excellent travail
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
12.931iiiiiiiii
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom6_client_part 6_343.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:31:23] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106be266de5f7fd519f4 HTTP/1.1" 200 - +INFO:root:2025-10-18 10:31:37.130952 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n

 

\n

 

\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_685.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:31:41] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:root:2025-10-18 10:32:16.240996 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:32:16] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:34:30.984053 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:34:30] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:34:31.034625 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:34:31] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:34:37.638929 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_657.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:34:39] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:root:2025-10-18 10:35:51.282943 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:35:51] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:36:02.640350 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:36:02] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:36:02.685346 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:36:02] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:36:06.524990 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n
 
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_068.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:36:07] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:root:2025-10-18 10:36:27.209366 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:36:27] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:37:08.599147 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:37:08] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:37:08.643869 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:37:08] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:37:14.281725 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n
 
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_908.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:37:15] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:root:2025-10-18 10:57:08.433852 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:57:08] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:58:02.699190 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:58:02] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:58:02.782873 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:58:02] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 10:58:10.094249 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +INFO:root:2025-10-18 10:58:12.777416 : Create_Bulletin_By_Inscrit_PDF -no loader for this environment specified - Line : 3095 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 10:58:12] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 500 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 10:59:12.777191 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 10:59:12.777191 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 10:59:12.777191 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 10:59:12.777191 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 10:59:12.777191 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 11:00:38.554802 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 11:00:38] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 11:00:49.169656 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 11:00:49] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 11:00:49.217692 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 11:00:49] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 11:00:51.950113 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n
 
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n
\n

© 2024 Mon Site

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_278.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 11:00:53] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:root:2025-10-18 18:58:15.282739 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 18:58:15] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 18:58:31.096896 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 18:58:31] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 18:58:31.201776 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 18:58:31] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 18:58:39.083644 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n
\n

© 2024 Mon Site

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_226.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 18:58:41] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:root:2025-10-18 19:00:27.281974 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:00:27] "POST /myclass/api/Get_Personnalisable_Collection/ HTTP/1.1" 200 - +INFO:root:2025-10-18 19:00:27.287097 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:00:27] "POST /myclass/api/Get_List_Partner_Document_Super_Admin_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-18 19:00:35.690410 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:00:35] "POST /myclass/api/Get_List_Partner_Document_with_filter_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-18 19:00:37.647016 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-18 19:00:37.650952 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:00:37] "POST /myclass/api/Get_Given_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:00:37] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-18 19:00:41.756553 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:00:41] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 19:01:13.577304 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:01:13] "POST /myclass/api/Update_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:root:2025-10-18 19:01:13.652532 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:01:13] "POST /myclass/api/Get_Given_Partner_Document_Super_Admin/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 19:08:15.097078 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 19:08:15.097078 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 19:08:15.098080 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 19:08:15.098080 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 19:08:15.098080 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 19:10:23.949413 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 19:10:23.949413 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 19:10:23.954408 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 19:10:23.954408 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 19:10:23.955415 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 19:11:00.349843 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 19:11:00.349843 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 19:11:00.349843 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 19:11:00.349843 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 19:11:00.350845 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 19:11:16.063876 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n
\n

© 2024 Mon Site

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_025.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:11:21] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 19:13:03.747067 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 19:13:03.748070 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 19:13:03.748070 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 19:13:03.748070 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 19:13:03.748070 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 19:13:56.316028 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 19:13:56.316028 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 19:13:56.316028 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 19:13:56.316028 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 19:13:56.317028 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 19:14:03.729520 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n
\n

© 2024 Mon Site

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_513.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:14:05] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:root:2025-10-18 19:15:00.997988 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:15:01] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-18 19:16:07.495446 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:16:07] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 19:16:07.573155 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:16:07] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-18 19:16:12.503843 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_191.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:16:14] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\spire\\pdf\\PdfDocumentBase.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 19:43:42.770797 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 19:43:42.770797 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 19:43:42.770797 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 19:43:42.770797 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 19:43:42.770797 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 19:51:44.250611 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_323.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:root:2025-10-18 19:51:47.638897 : Create_Bulletin_By_Inscrit_PDF -IO_SharingViolation_File, C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Initiale\Ela_back\Back_Office_FI\temp_direct\iiiiiii.pdf: at Microsoft.Win32.SafeHandles.SafeFileHandle.CreateFile(String, FileMode, FileAccess, FileShare, FileOptions) + 0x15c + at Microsoft.Win32.SafeHandles.SafeFileHandle.Open(String, FileMode, FileAccess, FileShare, FileOptions, Int64, Nullable`1) + 0x95 + at System.IO.Strategies.OSFileStreamStrategy..ctor(String, FileMode, FileAccess, FileShare, FileOptions, Int64, Nullable`1) + 0x50 + at Spire.Pdf.PdfDocumentBase.Save(String) + 0xa6 + at Spire.Pdf.PdfDocumentBase.Save(String, FileFormat) + 0x3b + at Spire.Pdf.AOT.NLPdfDocument.PdfDocument_SaveToFile(IntPtr, IntPtr, IntPtr) + 0x98 - Line : 3141 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:51:48] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 500 - +INFO:root:2025-10-18 19:52:07.738135 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_172.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 19:52:09] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 19:55:22.027473 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 19:55:22.027473 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 19:55:22.027473 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 19:55:22.028471 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 19:55:22.028471 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 19:57:22.603355 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 19:57:22.603355 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 19:57:22.603355 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 19:57:22.603355 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 19:57:22.603355 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 19:59:20.939276 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 19:59:20.939276 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 19:59:20.939276 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 19:59:20.939276 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 19:59:20.939276 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 19:59:52.656318 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 19:59:52.656318 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 19:59:52.656318 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 19:59:52.656318 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 19:59:52.656318 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 20:00:12.689116 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_791.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 20:00:14] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 20:03:10.282715 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 20:03:10.282715 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 20:03:10.283708 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 20:03:10.283708 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 20:03:10.283708 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 20:07:06.250352 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 20:07:06.250352 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 20:07:06.250352 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 20:07:06.250352 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 20:07:06.250352 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 20:07:18.052625 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_645.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:root:2025-10-18 20:07:20.908120 : Create_Bulletin_By_Inscrit_PDF -[Errno 13] Permission denied: './temp_direct/iiiiiii22.pdf' - Line : 3189 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 20:07:20] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 500 - +INFO:root:2025-10-18 20:07:33.438741 : Security check : IP adresse '127.0.0.1' connected +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_674.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 20:07:35] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 20:15:01.770774 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 20:15:01.770774 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 20:15:01.770774 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 20:15:01.770774 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 20:15:01.770774 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 20:15:12.106022 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 20:15:12.106022 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 20:15:12.106022 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 20:15:12.106022 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 20:15:12.106022 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 20:15:55.889302 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_272.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:root:2025-10-18 20:15:58.781812 : Create_Bulletin_By_Inscrit_PDF -'Canvas' object has no attribute 'd' - Line : 3186 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 20:15:58] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 500 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 20:17:11.140270 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 20:17:11.140270 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 20:17:11.140270 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 20:17:11.140270 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 20:17:11.140270 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 20:17:15.515195 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_476.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:root:2025-10-18 20:17:18.501492 : Create_Bulletin_By_Inscrit_PDF -'Canvas' object has no attribute 'd' - Line : 3186 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 20:17:18] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 500 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 20:18:11.466140 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 20:18:11.466140 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 20:18:11.466140 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 20:18:11.466140 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 20:18:11.466140 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 20:18:11.545764 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_926.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:root:2025-10-18 20:18:12.804504 : Create_Bulletin_By_Inscrit_PDF -'Canvas' object has no attribute 'd' - Line : 3184 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 20:18:12] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 500 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 20:18:41.846219 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 20:18:41.846219 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 20:18:41.846219 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 20:18:41.847222 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 20:18:41.847222 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 20:18:42.021400 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_095.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:root:2025-10-18 20:18:44.349543 : Create_Bulletin_By_Inscrit_PDF -'Canvas' object has no attribute 'd' - Line : 3184 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 20:18:44] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 500 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 20:20:10.026343 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 20:20:10.026343 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 20:20:10.026343 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 20:20:10.026343 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 20:20:10.026343 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 20:20:16.738261 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_156.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 20:20:18] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 20:23:59.109036 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 20:23:59.109036 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 20:23:59.109036 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 20:23:59.109036 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 20:23:59.109036 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 20:25:56.573311 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 20:25:56.573311 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 20:25:56.574309 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 20:25:56.574309 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 20:25:56.574309 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 20:25:56.954145 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_989.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:root:2025-10-18 20:26:02.278823 : Create_Bulletin_By_Inscrit_PDF -'Canvas' object is not callable - Line : 3184 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 20:26:02] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 500 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 20:26:41.497932 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 20:26:41.498935 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 20:26:41.498935 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 20:26:41.498935 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 20:26:41.499980 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 20:26:41.869521 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_031.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:root:2025-10-18 20:26:50.218938 : Create_Bulletin_By_Inscrit_PDF -'Canvas' object is not callable - Line : 3184 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 20:26:50] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 500 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 20:27:46.271156 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 20:27:46.272157 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 20:27:46.272157 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 20:27:46.272157 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 20:27:46.272157 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 20:27:46.350389 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_607.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 20:27:47] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-18 20:28:14.582363 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-18 20:28:14.583363 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-18 20:28:14.583363 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-18 20:28:14.583363 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-18 20:28:14.583363 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-18 20:28:23.005615 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 696 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 526 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 499 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 673 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 922 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 568 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 626 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2024
Promotion : Licence info Semestre 1
\n\n\n\n\n\n\n\n\n
xddd   qsdqsd
Né(e) le 12/10/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION26.927.36 ssqdsqqsd
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 110.00.0  
ALGORITHMIQUE ET PROGRAMMATION IMPERATIVE 210.00.0  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
22.311bravoo 17/10
\n

 

\n

Imprimé le : 18/10/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom4_client_part 4_941.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 35867 +INFO:werkzeug:127.0.0.1 - - [18/Oct/2025 20:28:24] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/6TncY6p2FiZFzzgGrjEWhhCGzqwJznbilw/684f106ae266de5f7fd519e0 HTTP/1.1" 200 - +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 09:36:42.603514 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 09:36:42.603514 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 09:36:42.603514 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 09:36:42.603514 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 09:36:42.604522 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 09:37:42.169366 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 09:37:42.169366 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 09:37:42.169366 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 09:37:42.169366 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 09:37:42.170358 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 09:39:58.680572 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:39:58] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:39:59.484986 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:39:59.485986 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:39:59.491998 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:39:59.497034 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:39:59.500038 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:39:59] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:39:59] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:39:59] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:39:59.543332 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:39:59] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:39:59.555362 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:39:59.559355 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:39:59.565937 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:39:59] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:39:59.574948 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:39:59] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:39:59] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:39:59.582923 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:39:59.586914 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:39:59] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:39:59] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:39:59] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:39:59] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:40:04.035270 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:40:04.038220 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:40:04.041218 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:40:04.043316 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:40:04.048847 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:40:04.054490 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:04] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:40:04.063467 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:04] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:40:04.074204 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:04] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:04] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:04] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:04] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:04] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:04] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:40:08.719829 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:40:08.727861 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:40:08.743041 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:08] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:40:08.754054 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:08] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:08] "POST /myclass/api/Get_List_Jury/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:08] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:40:10.077878 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:40:10.080893 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:40:10.089448 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:10] "POST /myclass/api/Get_Given_Jury_With_Members/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:10] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class_From_Session_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:10] "POST /myclass/api/Get_List_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:40:11.900287 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:11] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:40:16.038262 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:16] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:40:16.169018 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:40:16.172029 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:40:16.175013 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:40:16.176029 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:40:16.181016 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:40:16.185023 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:16] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:16] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:16] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:16] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:16] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:40:16] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:42:21.740674 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:21.742673 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:21.746672 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:21] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:42:21.753673 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:21] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:21] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:42:21.765674 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:21] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:42:21.789675 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:21.792675 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:21.795674 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:21.799673 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:21] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:21] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:21] "POST /myclass/api/Get_List_Jury/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:21] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:42:30.072932 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:30.074930 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:30.076954 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:30.080917 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:30.082918 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:30.087918 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:30] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:42:30.103965 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:30] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:30] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:30] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:42:30.110918 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:30.114918 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:30.117918 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:30.121918 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:30] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:42:30.129952 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:30] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:30] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:30] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:30] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:31] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:42:32.771594 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:32.775598 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:32.780593 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:32] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:42:32.794602 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:32] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:32] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:42:32.803116 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:32.809116 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:32] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:42:32.812117 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:32] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:32] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:32] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:42:35.138761 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:42:35.141758 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:35] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:42:36] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:44:37.471016 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:44:37.473016 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:44:37.477016 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:44:37.479014 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:44:37] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:44:37] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:44:37] "POST /myclass/api/Get_List_Jury/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:44:37] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:51:10.049124 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:51:10.052127 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:51:10.054122 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:51:10.056126 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:51:10] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:51:10.059122 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:51:10.062123 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:51:10] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:51:10.064122 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:51:10.065121 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:51:10] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:51:10] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:51:10] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:51:10.072124 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:51:10] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:51:10] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 09:51:10.076136 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:51:10.079129 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 09:51:10.080128 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:51:10] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:51:10] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:51:10] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:51:10] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 09:51:10] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 09:52:37.232206 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 09:52:37.232206 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 09:52:37.232206 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 09:52:37.232206 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 09:52:37.232206 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 09:52:57.274465 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 09:52:57.275466 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 09:52:57.275466 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 09:52:57.275466 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 09:52:57.276468 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 09:55:08.472301 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 09:55:08.472301 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 09:55:08.473301 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 09:55:08.473301 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 09:55:08.473301 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 09:55:33.830298 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 09:55:33.830298 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 09:55:33.830298 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 09:55:33.830298 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 09:55:33.830298 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 09:55:50.987581 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 09:55:50.988581 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 09:55:50.988581 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 09:55:50.988581 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 09:55:50.988581 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 09:56:14.834861 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 09:56:14.834861 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 09:56:14.834861 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 09:56:14.834861 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 09:56:14.834861 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 09:56:51.549100 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 09:56:51.550096 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 09:56:51.550096 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 09:56:51.550096 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 09:56:51.550096 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 09:57:23.668625 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 09:57:23.668625 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 09:57:23.668625 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 09:57:23.668625 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 09:57:23.668625 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 09:57:42.325213 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 09:57:42.325213 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 09:57:42.325213 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 09:57:42.325213 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 09:57:42.325213 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 09:58:12.343890 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 09:58:12.343890 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 09:58:12.344893 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 09:58:12.344893 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 09:58:12.344893 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 09:58:41.365746 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 09:58:41.365746 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 09:58:41.365746 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 09:58:41.365746 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 09:58:41.365746 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 09:59:49.976276 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 09:59:49.976276 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 09:59:49.976276 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 09:59:49.976276 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 09:59:49.976276 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 10:00:15.379985 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 10:00:15.380998 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 10:00:15.380998 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 10:00:15.380998 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 10:00:15.380998 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 10:00:47.130656 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 10:00:47.130656 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 10:00:47.130656 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 10:00:47.130656 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 10:00:47.130656 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 10:01:28.574153 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 10:01:28.574153 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 10:01:28.574153 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 10:01:28.574153 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 10:01:28.574153 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 10:02:06.328895 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 10:02:06.329897 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 10:02:06.329897 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 10:02:06.329897 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 10:02:06.329897 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 10:03:08.816333 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 10:03:08.816333 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 10:03:08.816333 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 10:03:08.816333 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 10:03:08.816333 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 10:03:43.391038 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 10:03:43.391038 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 10:03:43.392040 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 10:03:43.392040 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 10:03:43.392040 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 10:04:21.184784 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 10:04:21.184784 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 10:04:21.184784 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 10:04:21.184784 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 10:04:21.185782 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 10:04:51.141020 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 10:04:51.141020 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 10:04:51.142019 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 10:04:51.142019 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 10:04:51.142019 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 10:06:05.123633 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 10:06:05.123633 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 10:06:05.124639 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 10:06:05.124639 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 10:06:05.124639 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 10:06:39.385911 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 10:06:39.385911 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 10:06:39.385911 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 10:06:39.385911 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 10:06:39.385911 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 10:09:13.931057 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:09:13.937055 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:09:13.942578 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:09:13.946578 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:09:13.958588 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:09:13.969107 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:09:13] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:09:13] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:09:14.001671 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:09:14] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:09:14.013680 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:09:14] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:09:14] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:09:14] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:09:14] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:09:14.031220 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:09:14.048262 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:09:14.059282 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:09:14.063264 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:09:14] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:09:14] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:09:14] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:09:14] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:09:15] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:12:49.701191 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:12:49.703191 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:12:49.707190 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:12:49.711191 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:12:49] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:12:49.724191 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:12:49] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:12:49.729193 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:12:49] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:12:49] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:12:49.747199 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:12:49.757200 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:12:49] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:12:49.767712 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:12:49] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:12:49] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:12:49.784220 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:12:49.799220 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:12:49.803226 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:12:49] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:12:49] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:12:49] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:12:50] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:12:51] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:17:56.974509 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:17:56.977509 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:17:56.983508 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:17:56.986509 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:17:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:17:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:17:57] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:17:57.002509 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:17:57.004508 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:17:57] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:17:57.013510 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:17:57.016509 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:17:57.023516 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:17:57] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:17:57] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:17:57.033515 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:17:57] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:17:57.046025 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:17:57.050026 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:17:57] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:17:57] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:17:57] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:17:57] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:17:58] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:20:16.873728 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:20:16.877682 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:20:16.879680 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:20:16.882683 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:20:16.886786 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:20:16.893683 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:20:16] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:20:16] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:20:16] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:20:16.904687 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:20:16.910195 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:20:16] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:20:16.914203 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:20:16] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:20:16] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:20:16.927716 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:20:16] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:20:16.935716 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:20:16.938715 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:20:16] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:20:16] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:20:16] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:20:17] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:20:18] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:29:28.659964 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:28.662975 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:28.665974 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:28] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:29:28.672976 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:28.678484 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:28] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:28] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:28] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:29:28.714486 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:28.717527 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:28.720509 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:28.724485 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:28] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:29:28.728485 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:28] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:29:28.732484 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:28] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:29:28.739483 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:28.744485 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:28] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:29:28.751484 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:28] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:28] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:28] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:29:28.757484 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:28.765493 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:28.769491 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:28] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:28] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:28] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:29] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:29] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:29:31.489441 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:31.493467 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:31.496442 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:31.501463 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:31] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:29:31.506475 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:31.513476 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:31] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:31] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:29:31.523095 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:31] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:31] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:31] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:31] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:29:34.432793 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:34.435815 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:34] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:35] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:29:51.531998 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:29:54.340880 : UpdateStagiairetoClass - : La valeur 'email' n'est pas presente dans la liste des arguments +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:29:54] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:32:21.315684 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:32:21.320686 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:32:21.323686 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:32:21.326687 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:21] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:32:21.336686 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:21] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:32:21.339693 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:21] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:32:21.347693 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:32:21.357204 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:21] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:32:21.365205 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:21] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:21] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:21] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:32:21.378205 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:32:21.383205 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:21] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:32:21.387203 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:21] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:21] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:21] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:22] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:32:51.837707 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:32:51.840706 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:32:51.843706 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:32:51.846707 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:51] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:32:51.852706 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:51] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:32:51.863711 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:51] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:51] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:32:51.871713 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:51] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:32:51.877759 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:51] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:32:51.882271 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:51] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:32:51.889356 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:32:51.895867 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:32:51.899870 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:51] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:51] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:51] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:52] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:32:52] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:33:05.882455 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:33:05.885483 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:33:05.889456 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:33:05.893461 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:33:05.898456 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:33:05] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:33:05] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:33:05.904456 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:33:05.905457 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:33:05] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:33:05] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:33:05] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:33:05] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:33:05] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:33:08.706133 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:33:08.710137 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:33:08] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:33:09] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:33:10.339779 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:33:10.343782 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:33:10] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:33:11] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:33:22.579232 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:33:22.602232 : UpdateStagiairetoClass -'status' - ERRORRRR AT Line : 1368 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:33:22] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:40:17.561821 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:40:17.578829 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:40:17.594344 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:40:17.606346 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:17] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:40:17.621343 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:17] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:40:17.637345 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:17] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:40:17.647490 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:40:17.658496 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:17] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:17] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:40:17.671492 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:40:17.680498 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:40:17.697390 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:17] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:40:17.708391 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:17] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:17] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:18] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:20] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:40:39.066868 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:40:39.070871 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:40:39.073881 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:40:39.078868 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:39] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:40:39.087895 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:39] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:40:39.093882 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:40:39.095869 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:39] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:39] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:39] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:39] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:39] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:40:41.546272 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:40:41.550245 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:41] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:42] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:40:50.381451 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:40:50.396957 : SendPre_InscriptionEmail - La valeur 'token' n'est pas presente dans la liste des arguments +INFO:root:2025-10-19 10:40:50.399471 : WARNING : Impossible d'envoyer le mail de preinscriton ŕ UpdateStagiairetoClass - l'adresse email mysytraining+apprenant1@gmail.com pour la session 68e419c2e5fea6f5328c2007 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:50] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:40:50.573233 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:40:50.579253 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:40:50.583255 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:50] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:50] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:40:50] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:42:01.072669 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:42:01.087631 : SendPre_InscriptionEmail - La valeur 'token' n'est pas presente dans la liste des arguments +INFO:root:2025-10-19 10:42:01.089631 : WARNING : Impossible d'envoyer le mail de preinscriton ŕ UpdateStagiairetoClass - l'adresse email SDSQ@sddf.fr pour la session 68e419c2e5fea6f5328c2007 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:42:01] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:42:01.262404 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:42:01.264403 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:42:01.267403 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:42:01] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:42:01] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:42:01] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:43:25.324650 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:43:25.328650 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:25] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:26] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:43:30.977915 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:35] "POST /myclass/api/Accept_List_AttendeeInscription/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:43:35.496869 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:43:35.499434 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:43:35.502443 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:35] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:43:35.507442 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:35] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:35] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:37] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:43:39.156065 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:43:39.161595 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:43:39.168594 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:43:39.174586 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:43:39.178588 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:39] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:43:39.185584 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:39] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:39] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:39] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:43:39.196580 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:43:39.197578 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:43:39.201588 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:39] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:43:39.206588 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:39] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:39] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:43:39.211588 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:43:39.214587 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:39] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:39] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:39] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:39] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:43:39] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:44:32.984941 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:44:32.988459 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:44:32.991457 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:44:32.994459 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:44:32.996460 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:32] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:33] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:44:33.003973 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:33] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:44:33.009975 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:44:33.011484 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:33] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:33] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:44:33.018493 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:33] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:33] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:44:33.024023 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:44:33.027021 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:44:33.032020 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:33] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:33] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:33] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:33] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:34] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:44:36.623637 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:44:36.629639 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:44:36.632637 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:44:36.635637 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:44:36.641637 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:44:36.647635 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:36] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:44:36.655634 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:36] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:36] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:36] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:36] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:44:39.400421 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:44:39.403439 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:39] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:44:40] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:51:49.342248 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:51:49] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:51:49.480422 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:51:49.482931 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:51:49.485960 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:51:49] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:51:49] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:51:49] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:52:03.516050 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:52:03] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:52:03.658340 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:52:03.659340 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:52:03.661340 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:52:03] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:52:03] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:52:03] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:53:34.381373 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:53:34.383391 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:53:34] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:53:34] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:53:35.594777 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:53:35.598782 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:53:35] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:53:36] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:55:29.471483 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:55:29.475481 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:55:29.482480 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:55:29.487482 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:55:29.490483 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:55:29.497483 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:55:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:55:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:55:29] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:55:29.513490 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:55:29] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:55:29.521004 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:55:29] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:55:29] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:55:29.532001 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:55:29] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:55:29.538002 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:55:29.543003 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:55:29.546003 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:55:29] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:55:29] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:55:29] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:55:29] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:55:30] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:56:00.372025 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:56:00.376541 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:56:00.379540 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:56:00.384545 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:00] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:56:00.391542 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:00] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:56:00.399545 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:00] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:00] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:56:00.407541 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:00] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:00] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:56:02.210829 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:56:02.213834 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:02] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:03] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:56:17.116509 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:18] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:56:18.404845 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:56:18.406811 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:56:18.412865 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:18] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:18] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:18] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:56:28.262522 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:56:28.266526 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:28] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:56:29] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:06.900872 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:06.903876 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:06] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:08] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:17.466428 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:17.481956 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:17.492956 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:17.508031 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:17] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:17.520026 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:17] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:17.532137 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:17] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:17] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:17.554555 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:17.567071 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:17.578078 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:17] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:17.593087 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:17] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:17.620648 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:17.629643 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:17] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:17] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:18.498815 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:18.510802 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:18] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:18.522797 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:18.533904 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:18.546010 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:18.555647 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:18.567575 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:18] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:18] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:18] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:18] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:18] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:18] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:18] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:20.664872 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:20.673923 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:20] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:22] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:24] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:42.608175 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:42.609175 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:42.613686 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:42.617788 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:42.632787 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:42.665792 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:42.667793 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:42.669793 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:42.672985 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:42.679983 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:42.688495 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:42.690543 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:42.696544 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:42.701543 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:42.708570 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:42.710569 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:42.716609 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:42] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:43] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:45.381711 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:45.386711 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:45.389710 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:45.394708 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:45.397716 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:45] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:45.402714 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:45] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:45.407715 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:45] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:45] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:45] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:45] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:45] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:57:47.130422 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:57:47.134436 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:47] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:57:47] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:44.066743 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:44.069704 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:44.074704 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:44] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:44.082710 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:44] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:44.088708 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:44] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:44.097223 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:44] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:44.105224 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:44.109224 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:44] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:44] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:44] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:44.122756 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:44.127752 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:44.136754 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:44.141754 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:44] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:44] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:44] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:44] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:45] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:49.022877 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:49.027878 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:49.035909 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:49.042907 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:49.047910 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:49.088911 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:49.096423 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:49.104423 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:49.110427 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:49.121429 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:49.130977 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:49.138491 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:49.147491 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:49.152493 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:49.157493 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:49.163491 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:49.168497 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:49] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:50] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:53.770673 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:53.775674 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:53.779682 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:53.781683 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:53] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:53.787143 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:53] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:53] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:53] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:53] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:53.803668 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:53.806667 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:53] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:53] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:58:55.521499 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:58:55.540518 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:55] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:58:56] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:59:04.411375 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:59:04] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:59:04.563560 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:59:04.564561 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:59:04.568562 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:59:04] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:59:04] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:59:04] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:59:14.100511 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:59:14.103521 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:59:14] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:59:14] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 10:59:23.043939 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 10:59:23.046937 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:59:23] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 10:59:23] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:00:35.186333 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:00:35] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:00:35.213334 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:00:35.228334 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:00:35] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:00:35.245339 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:00:35] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:00:35] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:00:35.267850 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:00:35.283851 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:00:35] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:00:35.297850 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:00:35] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:00:35.410367 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:00:35] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:00:35.427368 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:00:35.439368 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:00:35.456890 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:00:35] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:00:35] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:00:35] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:00:35.472405 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:00:36] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:00:43] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:01:48.059513 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:01:48.063532 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:01:48.065534 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:01:48.070533 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:01:48.072533 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:48] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:01:48.083537 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:48] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:48] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:48] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:01:48.096049 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:48] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:01:48.107049 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:48] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:01:48.113048 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:01:48.120049 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:48] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:01:48.128051 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:01:48.137049 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:48] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:48] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:48] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:48] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:48] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:01:56.749761 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:01:56.753759 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:01:56.756760 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:01:56.759763 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:01:56.765771 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:56] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:56] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:01:56.771770 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:01:56.773770 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:56] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:56] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:56] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:56] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:01:56] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:02:02.118738 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:02:02.121739 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:02:02] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:02:02] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:02:10.308699 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:02:10.312712 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:02:10] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:02:11] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:03:10.446482 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:03:10.450059 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:03:10.455058 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:10] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:10] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:03:10.464056 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:03:10.468059 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:10] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:03:10.472059 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:10] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:03:10.482058 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:03:10.489071 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:03:10.491091 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:10] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:03:10.499064 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:10] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:10] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:03:10.510587 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:03:10.512581 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:10] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:10] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:10] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:10] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:11] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:03:52.081777 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:03:52.086778 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:03:52.090778 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:03:52.093777 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:03:52.098778 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:03:52.106780 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:52] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:03:52.120778 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:52] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:52] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:52] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:52] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:52] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:03:52.134785 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:03:52.141295 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:03:52.146295 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:52] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:03:52.154295 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:52] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:03:52.168296 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:52] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:52] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:52] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:03:53] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:04:02.006220 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:02.007270 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:02.009783 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:02.014783 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:04:02.030812 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:04:02.066329 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:02.069329 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:02.072330 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:02.076330 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:04:02.086331 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:02.089329 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:04:02.092329 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:04:02.102361 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:02.107331 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:04:02.116331 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:02.118331 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:02.122331 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:02] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:04:04.519528 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:04.522528 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:04.525529 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:04.528036 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:04] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:04:04.532551 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:04.536556 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:04] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:04:04.542562 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:04] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:04] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:04] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:04] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:04] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:04:06.604791 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:04:06.607787 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:06] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:04:07] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:05:00.528568 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:05:00.535572 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:00] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:01] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:05:05.861146 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:05:05.865143 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:05] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:06] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:05:11.538981 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:12] "POST /myclass/api/Accept_List_AttendeeInscription/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:05:12.793990 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:05:12.794971 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:05:12.797957 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:12] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:12] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:05:12.804406 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:12] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:13] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:05:27.774234 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:27] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:05:27.972641 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:05:27.976658 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:05:27.979641 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:27] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:05:42.814586 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:05:42.816611 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:05:42.820639 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:42] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:05:42.826612 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:05:42.832633 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:42] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:42] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:42] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:05:42.866612 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:05:42.868640 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:05:42.872652 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:05:42.878628 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:05:42.881632 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:05:42.888614 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:42] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:05:42.902646 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:42] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:05:42.907619 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:42] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:05:42.924087 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:42] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:05:42.934102 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:42] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:42] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:42] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:43] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:44] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:05:44] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:07:17.831736 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:07:17.832842 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:07:17.836468 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:07:17.840457 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:07:17.844078 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:07:17.850734 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:17] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:07:17.869613 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:07:17.875947 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:17] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:17] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:07:17.895196 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:07:17.903672 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:17] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:17] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:17] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:18] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:19] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:19] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:07:41.429605 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:07:41.434606 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:07:41.439606 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:07:41.446116 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:07:41.465117 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:07:41.466116 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:41] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:41] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:07:41.496117 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:07:41.503144 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:41] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:41] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:07:41.530123 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:07:41.535122 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:41] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:41] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:41] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:41] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:42] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:07:42] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:08:10.573823 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:08:10.577839 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:08:10.579836 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:08:10.584839 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:08:10.589840 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:08:10.592839 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:08:10] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:08:10] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:08:10.618356 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:08:10.622356 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:08:10] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:08:10] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:08:10.652356 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:08:10.663361 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:08:10] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:08:10] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:08:10] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:08:10] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:08:11] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:08:12] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:11:51.169386 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:11:51.176388 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:11:51.187392 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:11:51.191947 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:11:51.200838 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:11:51.213838 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:11:51] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:11:51] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:11:51.266229 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:11:51.275858 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:11:51] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:11:51] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:11:51.315758 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:11:51.333757 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:11:51] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:11:51] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:11:51] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:11:51] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:11:53] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:11:53] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:13:59.146819 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:13:59.150826 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:13:59.156820 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:13:59.163244 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:13:59.172201 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:13:59.180750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:13:59] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:13:59.210743 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:13:59] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:13:59.228753 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:13:59] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:13:59] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:13:59.251218 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:13:59.263376 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:13:59] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:13:59] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:13:59] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:13:59] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:14:00] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:14:00] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:15:20.586455 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:20.591494 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:20.595402 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:20.601475 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:20.611095 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:20.623110 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:20] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:20] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:15:20.644645 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:20.654817 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:20] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:20] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:15:20.686607 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:20.693493 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:20] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:20] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:20] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:21] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:22] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:22] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:15:29.650142 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:29.653139 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:29] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:15:29.662653 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:29.666156 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:29.672676 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:29] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:29] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:29] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:15:29.703704 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:29.705705 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:29.708704 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:29.714704 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:29.718705 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:29.725704 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:29] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:15:29.739707 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:29.742705 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:29] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:29] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:15:29.763706 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:15:29.770712 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:29] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:29] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:29] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:30] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:31] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:15:31] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:16:02.283598 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:16:02] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 11:17:10.545716 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 11:17:10.545716 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 11:17:10.545716 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 11:17:10.545716 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 11:17:10.546715 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 11:17:42.252928 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 11:17:42.252928 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 11:17:42.252928 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 11:17:42.252928 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 11:17:42.252928 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 11:17:45.889077 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:17:46] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:18:09.362604 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:09] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:18:10.730212 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:10.733212 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:10.737212 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:10.741210 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:10] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:10] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:10] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:10] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:18:11.612191 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:11.617188 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:11.621191 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:11.627189 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:11] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:18:11.631193 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:11] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:18:11.638188 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:11] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:18:11.645188 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:11] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:11] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:11] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:11] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:18:21.307179 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:21.311191 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:21.315191 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:21.319230 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:21] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:21] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:21] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:21] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:18:23.308843 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:23.312843 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:23.316879 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:23.321843 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:23.324900 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:23] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:18:23.330901 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:23] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:18:23.335903 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:23] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:23] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:23] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:23] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:23] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:18:31.689283 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:31.693288 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:31.698313 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:31.703292 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:31] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:31] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:31] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:31] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:18:35.508287 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:35.512283 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:35.516288 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:35.519286 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:18:35.525284 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:35] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:18:35.527284 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:35] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:35] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:18:35.538282 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:35] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:35] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:35] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:18:35] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\prj_common.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 11:20:10.356677 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 11:20:10.356677 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 11:20:10.356677 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 11:20:10.356677 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 11:20:10.356677 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 11:21:35.207394 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 11:21:35.207394 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 11:21:35.207394 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 11:21:35.207394 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 11:21:35.207394 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 11:22:06.169118 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 11:22:06.169118 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 11:22:06.169118 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 11:22:06.169118 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 11:22:06.169118 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 11:22:14.061498 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:22:14.066498 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:22:14.070497 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:22:14.075501 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:22:14] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:22:14] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:22:14] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:22:14] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:22:14.931148 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:22:14.936231 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:22:14.937214 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:22:14] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:22:14.949214 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:22:14.950229 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:22:14.953213 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:22:14] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:22:14] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:22:14.960214 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:22:14] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:22:14] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:22:14] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:22:14] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:23:08.819793 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:23:08.820794 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:23:08.823798 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:23:08.831794 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:23:08] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:23:08] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:23:08] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:23:08] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:23:11.940632 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:23:11.944638 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:23:11.949633 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:23:11.953632 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:23:11] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:23:11.958639 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:23:11.963637 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:23:11] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:23:11.970142 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:23:11] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:23:11] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:23:11] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:23:11] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:23:11] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\prj_common.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 11:24:41.833467 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 11:24:41.833467 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 11:24:41.834469 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 11:24:41.834469 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 11:24:41.834469 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 11:24:41.899763 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:24:41.901762 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:24:41.903763 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:24:41.905762 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:24:41.906762 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:24:41.908762 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:41] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:41] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:24:41.924762 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:24:41.925763 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:41] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:24:41.932762 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:41] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:24:41.941764 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:41] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:41] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:41] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:41] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:42] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:42] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:24:45.573804 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:45] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:24:46.570193 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:24:46.573191 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:24:46.580192 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:24:46.591743 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:46] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:46] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:46] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:46] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:24:47.706863 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:24:47.710372 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:24:47.713411 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:24:47.717379 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:24:47.721914 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:47] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:47] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:24:47.731436 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:24:47.736437 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:47] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:47] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:47] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:47] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:24:47] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:25:30.733303 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:25:30.738544 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:25:30.739556 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:25:30.744556 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:25:30] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:25:30] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:25:30] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:25:30] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:25:31.542156 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:25:31.546159 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:25:31.549154 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:25:31.553184 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:25:31.558187 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:25:31] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:25:31.564153 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:25:31] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:25:31.568154 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:25:31] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:25:31] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:25:31] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:25:31] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:25:31] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\prj_common.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 11:26:42.133051 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 11:26:42.133051 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 11:26:42.133051 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 11:26:42.134058 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 11:26:42.134058 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 11:26:56.854523 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:26:56.857524 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:26:56.858550 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:26:56.863525 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:26:56.869545 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:26:56.870541 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:26:56] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:26:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:26:56] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:26:56.905544 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:26:56.909544 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:26:56.913539 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:26:56] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:26:56.931526 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:26:56] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:26:56] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:26:56] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:26:56] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:26:57] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:26:58] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:27:25.818550 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:27:25.821549 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:27:25.823549 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:27:25.827554 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:27:25.829550 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:27:25.832554 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:25] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:27:25.848552 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:25] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:25] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:27:25.868072 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:27:25.876074 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:25] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:25] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:27:25.895599 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:25] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:25] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:25] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:26] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:27] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:27:37.213067 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:37] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:27:37.226074 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:27:37.235241 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:27:37.242246 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:37] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:27:37.247240 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:37] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:37] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:27:37.277245 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:27:37.287276 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:27:37.293798 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:27:37.304797 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:27:37.318803 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:27:37.338318 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:37] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:27:37.357318 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:37] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:27:37.371316 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:37] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:27:37.384324 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:37] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:37] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:27:37.427852 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:37] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:37] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:37] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:38] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:27:38] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:28:13.808609 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:28:13.811692 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:28:13.817691 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:28:13.823697 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:28:13.829697 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:28:13.832699 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:13] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:13] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:28:13.857213 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:28:13.868210 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:13] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:28:13.882215 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:13] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:13] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:28:13.915704 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:13] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:13] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:14] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:15] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:15] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:28:23.733604 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:28:23.737603 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:28:23.740604 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:28:23.744604 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:28:23.746113 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:28:23.754114 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:23] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:28:23.775119 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:23] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:23] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:28:23.795633 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:28:23.801632 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:23] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:28:23.823631 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:23] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:23] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:23] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:24] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:25] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:25] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:28:43.970450 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:43] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:28:44.090363 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:28:44.092258 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:44] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:28:45] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:29:07.521459 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:29:07.524459 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:29:07.527458 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:29:07.532497 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:29:07.534459 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:29:07.540458 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:07] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:07] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:29:07.560463 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:29:07.565464 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:07] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:07] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:29:07.593995 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:29:07.596994 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:07] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:07] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:07] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:07] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:08] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:08] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:29:17.864624 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:29:17.868024 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:29:17.871027 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:29:17.876025 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:29:17.882025 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:29:17.881025 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:17] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:29:17.910032 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:29:17.915030 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:17] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:17] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:29:17.938542 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:29:17.946544 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:17] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:17] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:17] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:18] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:19] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:29:19] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:30:05.507688 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:30:05.510691 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:30:05.513689 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:30:05.516689 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:30:05.519692 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:30:05.523689 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:05] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:05] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:30:05.538690 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:30:05.541697 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:05] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:05] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:30:05.555697 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:30:05.559526 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:05] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:05] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:05] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:05] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:08] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:09] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:30:23.253017 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:23] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:30:33.193253 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:33] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:30:34.586310 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:30:34.589312 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:30:34.594311 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:30:34.598308 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:34] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:34] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:34] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:34] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:30:35.259478 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:30:35.262487 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:30:35.266484 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:30:35.271484 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:35] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:30:35.278989 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:35] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:30:35.285993 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:35] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:30:35.291989 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:35] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:35] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:35] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:35] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:30:55.331464 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:55] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:30:55.412078 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:30:55.415079 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:55] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:30:55] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:31:07.444820 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:31:07.449337 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:07] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:08] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:31:19.453446 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:19] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:31:19.650506 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:31:19.652905 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:19] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:31:19.657905 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:19] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:19] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:31:25.328638 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:31:25.331641 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:31:25.334639 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:31:25.335641 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:25] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:25] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:25] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:25] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:31:26.316152 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:31:26.321152 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:31:26.325150 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:26] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:31:26.330152 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:26] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:31:26.335168 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:31:26.338179 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:26] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:31:26.343181 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:26] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:26] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:26] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:31:26] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:32:18.524277 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:18.528283 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:18.533283 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:18.538282 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:18.548795 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:18.553795 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:18] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:32:18.569799 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:18] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:18] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:32:18.590308 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:18.597308 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:18] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:32:18.610310 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:18] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:18] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:18] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:18] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:18] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:19] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:32:35.169867 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:35.173867 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:35.179867 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:35.185867 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:35.191872 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:35.198992 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:35] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:32:35.215383 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:35] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:35] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:32:35.229382 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:35.239384 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:35] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:32:35.249387 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:35] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:35] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:35] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:35] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:35] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:36] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:32:38.858028 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:38.862031 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:38.866030 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:38.870026 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:38] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:38] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:38] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:38] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:32:40.131966 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:40.136961 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:40.139988 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:40.147991 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:40] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:32:40.155964 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:40] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:32:40.164964 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:32:40.166979 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:40] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:40] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:40] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:40] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:32:40] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:34:59.758071 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:34:59.760184 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:34:59.764185 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:34:59.766218 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:34:59.771185 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:34:59.778185 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:34:59] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:34:59] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:34:59.802185 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:34:59] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:34:59.811185 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:34:59.823190 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:34:59] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:34:59] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:34:59] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:34:59.847203 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:34:59] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:34:59] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:00] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:00] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:35:03.849707 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:03.853236 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:03.856235 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:03.860233 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:03] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:03] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:03] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:03] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:35:04.891145 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:04.895163 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:04.898153 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:04.905165 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:04.909163 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:04] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:04] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:04] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:35:04.919145 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:04] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:35:04.928307 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:04] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:04] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:04] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:35:54.032715 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:54.033713 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:54.036712 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:54.038713 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:54.043713 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:54.050714 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:54] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:54] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:54] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:35:54.072235 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:54.076232 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:54.080232 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:54] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:54] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:35:54.101232 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:54] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:54] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:54] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:54] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:55] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:35:56.049433 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:56.053440 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:56.057450 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:56.059476 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:56] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:56] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:56] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:56] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:35:56.929550 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:56.932552 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:56.936558 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:56.941567 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:35:56.944554 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:56] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:35:56.951557 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:56] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:56] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:35:56.961573 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:56] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:56] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:56] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:35:56] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:36:45.083243 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:36:45.086746 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:36:45.091750 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:36:45.093753 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:36:45.099752 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:36:45.107752 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:36:45] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:36:45] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:36:45] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:36:45.119752 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:36:45.127760 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:36:45.136262 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:36:45] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:36:45] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:36:45.155267 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:36:45] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:36:45] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:36:45] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:36:45] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:36:46] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:36:59.174073 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:36:59.177088 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:36:59.180089 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:36:59.184091 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:36:59] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:36:59] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:36:59] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:36:59] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:36:59.994510 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:36:59.998512 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:37:00.004521 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:37:00.010524 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:37:00] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:37:00] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:37:00.020519 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:37:00.026619 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:37:00] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:37:00.030603 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:37:00] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:37:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:37:00] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:37:00] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:38:17.466904 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:38:17.469904 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:38:17.472905 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:38:17.477904 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:38:17.481909 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:17] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:38:17.500422 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:17] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:38:17.505936 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:38:17.521934 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:17] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:38:17.530934 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:38:17.538960 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:17] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:17] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:17] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:17] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:17] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:18] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:38:22.145294 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:38:22.148309 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:38:22.151861 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:38:22.157417 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:22] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:22] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:22] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:22] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:38:23.059747 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:38:23.064748 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:38:23.068750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:23] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:38:23.074748 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:38:23.077746 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:23] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:38:23.086746 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:23] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:38:23.091746 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:23] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:23] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:23] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:23] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:38:30.820639 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:38:30.823669 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:30] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:38:30] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:39:06.149047 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:06.151052 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:06.154054 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:06.157051 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:06.162094 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:06.170271 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:06] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:39:06.184272 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:06] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:06] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:39:06.197273 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:06.200277 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:06] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:39:06.217272 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:06] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:06] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:06] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:06] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:06] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:07] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:39:37.164805 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:37.170173 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:37.175139 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:37.177140 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:37.184139 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:37.187139 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:37] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:37] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:37] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:39:37.221686 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:37.225688 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:37.243655 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:37] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:39:37.261656 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:37] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:37] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:37] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:37] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:37] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:38] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:39:58.197519 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:58.199520 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:58.203521 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:58.208521 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:58.215521 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:58.221520 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:58] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:58] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:58] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:39:58.245519 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:58.248552 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:39:58.254522 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:58] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:39:58.266520 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:58] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:58] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:58] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:58] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:58] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:39:59] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:40:05.341749 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:40:05.344748 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:40:05.349746 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:40:05.352773 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:40:05] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:40:05] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:40:05] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:40:05] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:40:06.220329 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:40:06.223324 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:40:06.227308 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:40:06.233309 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:40:06.238307 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:40:06] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:40:06.244309 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:40:06] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:40:06] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:40:06.253308 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:40:06] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:40:06] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:40:06] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:40:06] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:42:17.986924 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:17.995440 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:18.005442 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:18.013450 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:18.030961 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:18] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:42:18.057002 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:18] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:42:18.064971 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:18.074014 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:18] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:42:18.100026 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:18] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:18] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:42:18.120815 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:18] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:18] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:18] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:18] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:19] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:42:22.259285 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:22.262291 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:22.266296 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:22.270296 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:22] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:22] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:22] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:22] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:42:23.157151 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:23.160152 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:23.164162 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:23.169161 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:23.173176 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:23] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:42:23.177295 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:23.182296 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:23] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:23] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:23] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:23] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:23] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:23] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:42:33.632298 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:33.636293 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:33] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:33] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:42:39.959348 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:39] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:42:40.034695 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:42:40.037714 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:40] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:42:40] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:04.841963 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:04.843964 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:04.849964 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:04.854963 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:04.859964 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:04.864966 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:04] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:04] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:04.886968 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:04.892977 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:04] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:04.908494 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:04] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:04] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:04.928500 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:04] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:04] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:04] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:05] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:06] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:11.590720 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:12] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:15.728653 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:15.729685 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:15.734668 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:15.738655 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:15] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:15] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:15] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:15] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:16.660397 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:16.665403 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:16.670412 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:16.675427 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:16] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:16.684426 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:16] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:16] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:16.690930 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:16.693944 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:16] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:16] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:16] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:16] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:32.078678 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:32] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:32.255227 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:32.256261 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:32] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:33] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:35.435259 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:35.439282 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:35.440273 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:35.444275 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:35] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:35] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:35] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:35] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:36.555771 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:36.559769 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:36.562272 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:36.566276 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:36.569282 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:36] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:36.575280 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:36] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:36.581788 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:36] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:36] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:36] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:36] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:36] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:48.123361 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:48.132829 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:48.134837 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:48.144842 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:48.148850 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:48.179364 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:48.181363 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:48.184368 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:48.189368 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:48.195411 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:48.201928 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:48.203956 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:48.209926 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:48.216926 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:48.219925 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:48.223925 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:48.229927 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:48.240938 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:48.246441 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:48.251448 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:48.270467 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:48.276468 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:48.284486 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:48] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:49] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:43:50.381345 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:43:50.384346 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:50] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:43:51] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:28.527202 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:28.529204 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:28.533205 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:28] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:28.539204 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:28.548205 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:28] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:28] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:28] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:28.583208 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:28.586207 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:28.588209 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:28.590208 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:28.596244 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:28.600244 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:28] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:28.614246 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:28] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:28.622245 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:28] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:28.636265 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:28] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:28.644250 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:28] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:28] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:28] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:28] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.114550 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:29.117551 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:29.123549 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:29.126549 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.138555 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.148555 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:29.152557 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.164931 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:29.172932 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.182940 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:29.192444 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.215451 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.226451 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.261450 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.280457 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:29.281456 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.306971 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.324986 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.341970 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:47:29.347969 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.371969 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.386972 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.431528 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.444525 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.460196 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.481243 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.506014 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.608014 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.654017 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:47:29.672554 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:29] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:30] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:30] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:30] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:31] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:47:31] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:48:15.904931 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:48:15.907931 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:48:15.911929 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:48:15.917932 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:48:15.919931 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:48:15.926933 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:48:15] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:48:15] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:48:15.944931 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:48:15.949934 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:48:15] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:48:15.970971 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:48:15] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:48:15.982468 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:48:15] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:48:16] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:48:16] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:48:16] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:48:17] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:48:17] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\prj_common.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 11:49:37.618615 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 11:49:37.619599 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 11:49:37.619599 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 11:49:37.619599 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 11:49:37.619599 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 11:49:59.012829 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:49:59.016829 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:49:59.020828 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:49:59.024865 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:49:59.028832 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:49:59.033833 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:49:59.034834 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:49:59] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:49:59] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:49:59] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:49:59] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:49:59] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:49:59] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:49:59] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:50:01.963800 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:50:01.966795 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:01] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:02] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:50:06.528823 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:50:06.541820 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:06] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:50:06.567331 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:06] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:06] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:50:06.586331 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:06] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:50:06.607330 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:06] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:50:06.639313 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:06] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:50:06.654344 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:06] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:50:08.112449 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 11:50:08.133438 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:08] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:50:20.836305 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:20] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:50:21.003664 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:21] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:50:21.026765 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:21] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 11:50:21.052683 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:21] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 11:50:21] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 12:00:50.823443 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 12:00:50.823443 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 12:00:50.823443 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 12:00:50.823443 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 12:00:50.823443 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 12:02:05.063633 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 12:02:05.063633 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 12:02:05.063633 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 12:02:05.063633 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 12:02:05.063633 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 12:02:24.397786 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:02:24.400786 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:02:24.402787 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:02:24.405787 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:02:24.409789 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:02:24.415299 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:24] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:24] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:02:24.427315 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:24] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:24] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:24] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:24] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:24] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:02:27.868117 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:02:27.872111 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:28] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:02:50.466003 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:50] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:02:50.491003 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:02:50.511020 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:50] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:02:50.520019 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:50] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:02:50.552521 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:50] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:02:50.570521 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:02:50.651030 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:02:50.691030 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:02:50.714031 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:02:50.729050 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:02:50.752588 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:50] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:50] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:50] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:02:50.799548 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:02:50.861300 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:02:50.902285 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:53] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:02:53.849427 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:55] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:55] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:55] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:02:55] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:03:03] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:03:07] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:03:09.109806 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

 

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_74 

Destinataire : part nom5_client

adresse04
code_postal04  - adresse04
pays04

\n
\n

Client : part nom5_client part 5 mysy1000formation+01@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Partner_Invoice_NEW_Invoice_74.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

 

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_74 

Destinataire : part nom5_client

adresse04
code_postal04  - adresse04
pays04

\n
\n

Client : part nom5_client part 5 mysy1000formation+01@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Invoice_Signe_19_10_2025_99.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 825 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 825 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:03:13] "POST /myclass/api/Invoice_Inscrption_With_Split_Session_By_Inscription_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:03:13.984403 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:03:15] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:03:23.206559 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:03:23.231632 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:03:23] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:03:23.720055 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:03:23.752630 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:03:23] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:03:41] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:03:41] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 12:10:18.194268 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 12:10:18.194268 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 12:10:18.195268 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 12:10:18.195268 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 12:10:18.195268 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 12:10:39.769258 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 12:10:39.769258 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 12:10:39.769258 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 12:10:39.769258 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 12:10:39.769258 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 12:11:42.937348 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 12:11:42.937348 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 12:11:42.937348 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 12:11:42.937348 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 12:11:42.937348 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 12:12:31.348026 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 12:12:31.348026 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 12:12:31.348026 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 12:12:31.348026 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 12:12:31.348026 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 12:14:00.778620 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 12:14:00.779631 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 12:14:00.779631 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 12:14:00.779631 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 12:14:00.779631 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 12:15:27.168093 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.173091 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.178090 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.183113 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.188094 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.193092 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:15:27.200092 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:15:27.225092 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:15:27.233100 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.239099 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:15:27.247622 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.258610 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.265644 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:15:27.282644 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.287649 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:15:27.307161 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.314160 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:15:27.328161 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:15:27.473438 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.475953 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.483954 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:15:27.488955 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:15:27.500953 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.508953 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:15:27.526952 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.533960 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.534958 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.542959 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:15:27.569988 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:15:27.579990 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:27] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:29] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:15:29] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:36.987574 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:36.990576 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:36.992574 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:36.994573 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:36.999577 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.007576 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.016575 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.024581 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:37.026580 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.034682 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.042689 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:37.046687 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:37.054688 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.073880 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.086881 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.109887 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:37.112912 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.140715 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:37.152701 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:37.153700 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.173701 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.181705 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.198702 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:37.205708 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.231226 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.243744 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.252741 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.268741 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:37.276740 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:37.305772 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:37] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:39] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:39] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:41.468427 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:41.471428 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:41.475442 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:41] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:41.483427 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:41.487434 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:41] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:41.492425 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:41.498432 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:41] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:41] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:41] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:41] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:41] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:43.843655 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:43.847656 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:43] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:44] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:18:50.725552 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:18:50.729548 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:50] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:18:51] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:17.281022 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:17.287037 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:17.291038 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:17.292038 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:17.299556 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:17.318108 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:17] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:17] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:17.339119 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:17.344638 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:17] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:17] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:17] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:17.355634 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:17.359656 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:17.363642 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:17.368641 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:17] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:17] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:17] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:17.934381 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:17.942409 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:17.963388 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:17.973384 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:17.977383 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:17] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:17.991398 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:18.010387 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:18.026920 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:18.031902 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:18.068423 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:18.083429 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:18.151954 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:18.163952 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:18.171961 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:18.195497 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:18.207034 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:18.228466 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:18.252467 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:18] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:20] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:20] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:20.390822 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:20.392822 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:20.396831 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:20] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:20.401848 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:20.404829 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:20.405830 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:20] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:20.412357 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:20] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:20] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:20] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:20] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:20] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:21.854189 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:21.858205 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:21] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:23] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:26.948646 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:26] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:27.095361 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:27.098340 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:27.102341 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:27] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:28.998252 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:29.000249 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:29] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:30] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.427839 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:56.433841 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:56.438351 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:56.444373 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.454372 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.463397 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.470400 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.478909 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:56.483912 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:56.489921 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:56.501909 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.509909 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.525915 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.546926 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:56.555454 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.590451 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.600451 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.610468 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.663107 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:56.668078 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.686086 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:56.695093 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:56.713084 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.731118 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.739078 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:56.745102 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:56.752122 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.776166 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:20:56.782166 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:20:56.822167 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:56] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:57] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:57] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:59] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:20:59] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:00.066758 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:00.070754 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:00.074756 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:00.079756 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:00] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:00] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:00.089777 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:00] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:00.094756 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:00.100761 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:00] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:00] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:00] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:01.939185 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:01.942197 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:01] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:03] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:30.726416 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:30.733416 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:30.736416 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:30.752414 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:30.761413 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:30.767413 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:30.773417 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:30] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:30] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:30.787414 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:30.790424 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:30] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:30.797425 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:30] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:30] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:30.810559 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:30.817081 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:30] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:30] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:30] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:31] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:31.703158 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:31.710377 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:31.720380 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:31.728379 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:31.741377 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:31] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:31] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:31] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:31.757377 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:31.765377 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:31] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:31] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:31.779378 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:31.786377 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:31] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:31.796389 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:31] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:31.812906 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:31.834944 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:31] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:31.858948 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:31] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:31.873944 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:31] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:31] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:31.923492 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:31.933546 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:31] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:31.970547 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:32] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:32] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:32] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:32.012603 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:32] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:32] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:32] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:33] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:42.632514 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:42.636515 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:42.642521 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:42.646520 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:42] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:42] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:42.654514 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:42.661511 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:42.665519 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:42] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:42] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:42] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:42] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:42] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:45.628149 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:45.631138 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:45] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:46] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.159442 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:56.161425 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:56.166422 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:56.173424 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:56.176424 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.191423 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.198424 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:56.201424 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.215681 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:56.219710 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.226713 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:56.234283 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:56.237871 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.254933 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.265951 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.274951 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.283952 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.319060 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.364989 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.378916 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:56.391886 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.414871 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:56.417871 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.448992 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.473554 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:56.482600 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:56.492163 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.499169 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:21:56.516172 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:21:56.545252 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:56] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:57] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:57] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:58] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:21:58] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:10.437938 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:10.442938 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:10.450035 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:10.454951 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:10.468490 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:10] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:10] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:10.488703 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:10] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:10] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:10.505852 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:10] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:10.525000 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:10.531902 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:10] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:10] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:10.550507 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:10.556585 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:10.570047 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:10] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:10] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:10] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:11.345053 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:11.349051 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:11.354064 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:11.372061 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:11.385077 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:11.399147 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:11.400193 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:11.421161 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:11.432159 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:11.448153 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:11.459168 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:11.474157 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:11.502737 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:11.540845 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:11.562881 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:11.594980 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:11.643583 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:11.656583 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:11] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:12] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:13.463580 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:13.477577 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:13] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:13.488589 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:13.502144 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:13] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:13.514159 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:13] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:13] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:13.530695 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:13] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:13] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:13.550719 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:13] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:14] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:15] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:22:16.824395 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:22:16.839948 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:16] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:22:20] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:09.591067 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:09.596070 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:09.598624 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:09.609641 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:09.614626 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:09] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:09] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:09.622176 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:09.628178 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:09] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:09] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:09] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:09] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:09] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:11.679626 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:11.683636 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:11] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:12] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:24.657557 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:24.659560 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:24.660558 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:24.662557 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:24.668557 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:24.672074 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:24.690081 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:24.694081 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:24.701081 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:24.702596 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:24.711112 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:24.725208 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:24.732209 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:24.745210 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:24.749208 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:24.772214 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:24.778731 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:24.784732 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:24] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:25] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:25.150432 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:25.154432 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:25.162442 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:25.163442 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:25] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:25.168440 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:25] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:25.176965 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:25] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:25.188972 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:25] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:25] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:25] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:25.218269 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:25.227270 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:25] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:23:25.233269 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:25.237270 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:23:25.242270 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:25] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:25] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:25] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:26] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:28] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:23:28] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:00.020242 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:00.023208 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:00.031219 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:00.035220 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:00.040225 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:00.048281 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:00.052805 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:00.475527 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:00.479526 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:00.481525 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:00.485529 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:00.488526 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:00.494526 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:00.503529 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:00.507527 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:00.520527 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:00.528526 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:00.530530 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:00.534534 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:00] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:01.487559 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:01.489560 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:01.493560 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:01.494561 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:01.502560 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:01.509561 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:01.520559 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:01.528581 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:01.546566 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:01.548564 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:01.555082 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:01.578081 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:01.590085 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:01.617080 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:01.658986 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:01.674106 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:01.715092 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:01.747643 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:01] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:02] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:02] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:03.283398 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:03.286398 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:03.289399 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:03.294915 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:03.297915 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:03] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:03.308915 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:03] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:03] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:03.325208 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:03] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:03] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:03] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:03] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:03] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:24:05.265301 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:24:05.268326 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:05] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:24:06] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:38.571275 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:38.573258 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:38.579262 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:38.583267 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:38.588271 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:38] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:38] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:38.597284 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:38.602467 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:38.608459 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:38] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:38] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:38] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:38] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:38] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:38.625443 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:38.628445 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:38.633449 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:38.637444 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:38] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:38] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:38] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:39.276396 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:39.281398 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:39.284397 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:39.295416 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:39.303917 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:39.315478 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:39.333477 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:39.345494 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:39.352481 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:39.360519 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:39.371520 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:39.374083 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:39.401582 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:39.410616 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:39.438667 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:39.456693 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:39.481669 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:39.492717 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:39] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:40] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:41] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:42.706850 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:42.709829 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:42.713832 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:42.716848 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:42.719857 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:42] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:42.727899 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:42] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:42.735937 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:42] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:42] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:42] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:42] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:42] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:25:47.848015 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:25:47.863020 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:47] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:25:48] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:00.927631 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:00.930628 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:00] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:01] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:30.407959 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:30.410960 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:30.413970 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:30.417970 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:30.418969 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:30.424972 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:30] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:30] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:30.438517 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:30] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:30.448520 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:30.450025 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:30] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:30.457033 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:30] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:30.462034 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:30] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:30.469032 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:30] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:30] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:30] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:31.134339 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:31.141854 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:31.144855 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:31.153855 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:31.163857 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:31.184853 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:31.186855 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:31.198854 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:31.213877 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:31.221889 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:31.231407 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:31.243409 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:31.267955 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:31.296120 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:31.338687 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:31.354683 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:31.394446 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:31.417450 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:31] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:32] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:33] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:36.631929 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:36.635926 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:36.641328 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:36.644326 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:36] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:36.653334 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:36.655366 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:36.661335 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:36] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:36] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:36] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:36] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:40.336222 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:40.340221 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:40] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:41] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:26:48.688265 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:26:48.691291 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:48] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:26:49] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:40.186906 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:40.196914 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:40.200913 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:40.206920 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:40.211921 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:40.223435 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:40.236434 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:40.243434 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:40.251434 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:40.255434 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:40.263434 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:40.268434 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:40.274444 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:40.301961 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:40.318472 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:40.334474 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:40.339475 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:40.365468 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:40] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:41] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:46.902432 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:46.911432 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:46.933448 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:46] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:46.949990 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:46.962993 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:46] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:46] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:46] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:47.071121 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:47.078154 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:47.084143 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:47.093336 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:47.101347 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:47] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:47] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:47] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:47.126880 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:47.128889 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:47] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:47] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:47.142900 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:47.172506 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:47] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:47] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:47.193047 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:47.207049 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:47.224045 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:47] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:47] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:47] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:47] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:49] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:55.406069 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:55.410103 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:55.413069 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:55.417067 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:55] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:55.421066 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:55.427068 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:55] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:55] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:55.437068 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:55] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:55] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:55] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:55] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:27:57.134106 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:27:57.137450 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:57] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:27:59] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:03.402416 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:03.410939 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:03] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:09.394363 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:09] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:09.567228 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:09.589244 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:09] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:09.615238 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:09] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:09] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:11.764095 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:11.782096 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:11] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:13] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:14] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:20.895237 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:20.898223 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:20] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:22] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:26.148872 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:27] "POST /myclass/api/Accept_List_AttendeeInscription/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:27.857373 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:27.859393 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:27.864390 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:27.866383 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:29] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:43.582952 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:43] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:43.785548 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:43.788555 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:43.790057 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:43] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:43] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:43] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:52.978393 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:52.981393 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:52.983396 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:52] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:52.988397 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:52.999398 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:52] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:53] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:53] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:53.042399 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:53.044399 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:53.047908 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:53.050910 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:53.056910 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:28:53.065917 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:53] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:53.074422 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:53] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:53.082428 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:53] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:53.098737 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:53] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:28:53.107763 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:53] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:53] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:53] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:53] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:54] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:28:54] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:29:02.957361 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:29:02] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:29:03.078430 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:29:03.080430 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:29:03] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:29:04] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:29:06.914157 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:29:06.916157 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:29:06] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:29:07.451791 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:29:07.454790 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:29:07] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:29:07] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:29:08] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:29:26.574627 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

 

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_75 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Partner_Invoice_NEW_Invoice_75.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

 

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_75 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Invoice_Signe_19_10_2025_49.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 816 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 816 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:29:27] "POST /myclass/api/Invoice_Inscrption_With_Split_Session_By_Inscription_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:29:27.705912 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:29:28] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 12:34:59.760979 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 12:34:59.760979 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 12:34:59.760979 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 12:34:59.761980 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 12:34:59.761980 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 12:34:59.889512 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:34:59.892512 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:34:59.894514 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:34:59.898031 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:34:59.900030 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:34:59.904031 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:34:59.908030 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:34:59.915043 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:34:59.923043 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:34:59] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:34:59.944557 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:34:59] "POST /myclass/api/Get_Given_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:34:59] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:34:59.965558 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:34:59.973559 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:34:59] "POST /myclass/api/Get_List_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:34:59] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:34:59.996562 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:35:00.013559 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:35:00] "POST /myclass/api/Get_List_Partner_Produit_Service/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:35:00] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:35:00] "POST /myclass/api/Get_List_Partner_Order_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:35:00] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:35:00] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:35:00] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:35:01] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:35:02] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:35:02] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:41:29.764521 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:41:29.769519 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:41:33.459391 : check_source_ipv4 -[Errno 22] Invalid argument - ERRORRRR AT Line : 1057 +INFO:root:2025-10-19 12:41:33.462495 : check_source_ipv4 -[Errno 22] Invalid argument - ERRORRRR AT Line : 1057 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:41:33] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 500 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:41:33] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 500 - +ERROR:werkzeug:Error on request: +Traceback (most recent call last): + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Initiale\Ela_back\Back_Office_FI\prj_common.py", line 1057, in check_source_ipv4 + myprint(" Security check : IP adresse '"+str(source_ip)+"' connected") + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Initiale\Ela_back\Back_Office_FI\prj_common.py", line 74, in myprint + print(Fore.RED+str(datetime.now()) + " : " + str(message)+Style.RESET_ALL) +OSError: [Errno 22] Invalid argument + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\werkzeug\debug\__init__.py", line 329, in debug_application + app_iter = self.app(environ, start_response) + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask\app.py", line 2552, in __call__ + return self.wsgi_app(environ, start_response) + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask\app.py", line 2532, in wsgi_app + response = self.handle_exception(e) + ^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask_cors\extension.py", line 176, in wrapped_function + return cors_after_request(app.make_response(f(*args, **kwargs))) + ^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask\app.py", line 2529, in wsgi_app + response = self.full_dispatch_request() + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask\app.py", line 1825, in full_dispatch_request + rv = self.handle_user_exception(e) + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask_cors\extension.py", line 176, in wrapped_function + return cors_after_request(app.make_response(f(*args, **kwargs))) + ^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask\app.py", line 1821, in full_dispatch_request + rv = self.preprocess_request() + ^^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask\app.py", line 2313, in preprocess_request + rv = self.ensure_sync(before_func)() + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Initiale\Ela_back\Back_Office_FI\main.py", line 131, in before_request + if mycommon.check_source_ipv4(str(request.remote_addr)) is False: + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Initiale\Ela_back\Back_Office_FI\prj_common.py", line 1065, in check_source_ipv4 + myprint(str(inspect.stack()[0][3]) + " -" + str(e) + " - ERRORRRR AT Line : " + str(exc_tb.tb_lineno)) + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Initiale\Ela_back\Back_Office_FI\prj_common.py", line 74, in myprint + print(Fore.RED+str(datetime.now()) + " : " + str(message)+Style.RESET_ALL) +OSError: [Errno 22] Invalid argument + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\werkzeug\serving.py", line 333, in run_wsgi + execute(self.server.app) + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\werkzeug\serving.py", line 322, in execute + for data in application_iter: + ^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\werkzeug\debug\__init__.py", line 364, in debug_application + environ["wsgi.errors"].write("".join(tb.render_traceback_text())) +OSError: [Errno 22] Invalid argument +ERROR:werkzeug:Error on request: +Traceback (most recent call last): + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Initiale\Ela_back\Back_Office_FI\prj_common.py", line 1057, in check_source_ipv4 + myprint(" Security check : IP adresse '"+str(source_ip)+"' connected") + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Initiale\Ela_back\Back_Office_FI\prj_common.py", line 74, in myprint + print(Fore.RED+str(datetime.now()) + " : " + str(message)+Style.RESET_ALL) +OSError: [Errno 22] Invalid argument + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\werkzeug\debug\__init__.py", line 329, in debug_application + app_iter = self.app(environ, start_response) + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask\app.py", line 2552, in __call__ + return self.wsgi_app(environ, start_response) + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask\app.py", line 2532, in wsgi_app + response = self.handle_exception(e) + ^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask_cors\extension.py", line 176, in wrapped_function + return cors_after_request(app.make_response(f(*args, **kwargs))) + ^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask\app.py", line 2529, in wsgi_app + response = self.full_dispatch_request() + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask\app.py", line 1825, in full_dispatch_request + rv = self.handle_user_exception(e) + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask_cors\extension.py", line 176, in wrapped_function + return cors_after_request(app.make_response(f(*args, **kwargs))) + ^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask\app.py", line 1821, in full_dispatch_request + rv = self.preprocess_request() + ^^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\flask\app.py", line 2313, in preprocess_request + rv = self.ensure_sync(before_func)() + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Initiale\Ela_back\Back_Office_FI\main.py", line 131, in before_request + if mycommon.check_source_ipv4(str(request.remote_addr)) is False: + ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Initiale\Ela_back\Back_Office_FI\prj_common.py", line 1065, in check_source_ipv4 + myprint(str(inspect.stack()[0][3]) + " -" + str(e) + " - ERRORRRR AT Line : " + str(exc_tb.tb_lineno)) + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Initiale\Ela_back\Back_Office_FI\prj_common.py", line 74, in myprint + print(Fore.RED+str(datetime.now()) + " : " + str(message)+Style.RESET_ALL) +OSError: [Errno 22] Invalid argument + +During handling of the above exception, another exception occurred: + +Traceback (most recent call last): + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\werkzeug\serving.py", line 333, in run_wsgi + execute(self.server.app) + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\werkzeug\serving.py", line 322, in execute + for data in application_iter: + ^^^^^^^^^^^^^^^^^ + File "C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\werkzeug\debug\__init__.py", line 364, in debug_application + environ["wsgi.errors"].write("".join(tb.render_traceback_text())) +OSError: [Errno 22] Invalid argument +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 12:42:26.573546 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 12:42:26.573546 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 12:42:26.574547 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 12:42:26.574547 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 12:42:26.574547 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 12:42:52.458142 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 12:42:52.458142 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 12:42:52.458142 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 12:42:52.458142 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 12:42:52.458142 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\email_mgt.py', reloading +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 12:44:20.745932 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 12:44:20.745932 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 12:44:20.745932 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 12:44:20.745932 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 12:44:20.746933 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 12:46:39.069403 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:46:39] "GET /myclass/api/ManualSendInvoiceEmailRIB_CIC_JMJFormation HTTP/1.1" 308 - +INFO:root:2025-10-19 12:46:39.077966 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n\n\n\n\t
\n\t\tMysy Training Logo \n\t
\n\t\n\t\t
\n\t\t\t
\n\t\t\t\t\n\t\t\t\t
\n\t\t\t\t\n\t\t\t\t\tJMJ FORMATION
\n\t\t\t\t\t388 Chemin Long Pré
\n\t\t\t\t\t97232 Le Lamentin
\n\t\t\t\t\tMartinique
\n\n\t\t\t\t
\n\n\n\t\t\t\t\n\n\t\t\t\t\tFacture n° FACT_20251012\n\n\n\t\t\t\t
\n\n\n\n\t\t\t\t\n\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t
Date de facture: 19/10/2025 Date échéance : 19/10/2025
\n\n\t\t\t\t\n\t\t\t\t\tOrigine : Contrat MTT/2025_N°0012/JMJ FORMATION
\n\t\t\t\t\tPériode : 14/10/2025 au 13/11/2025 \n\t\t\t\t\n\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\n\t\t\t\t\t\t\n\n\t\t\t\t\t
DescriptionQuantitéPrix unitaire (HT)Montant (HT)
ELYOS - Pack BASIQUE
\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t
1130 €130 €
 
\n\t\t\t\t\n\n\n\t\t\t\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t
    Montant HT: 130   €
    TVA : 11.05   €
    Montant TTC : 141,05   €
\n\n\t\t\t
\n\t\t\t
\n\t\t\t
\n\n\t\t\t\n\t\t\t\tRčglement : Virement bancaire

\n\n\n\n\n\t\t\t

\n\t\t\t\t> Relevé d\'identité bancaire\n\t\t\t

\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\n\n\n\t\t\t\t\n\n\t\t\t
BanqueCode agenceNuméro de compteClé RIB
30087338560002128550340
\n\n\t\t\t

\n\t\t\t\t> Identification internationale\n\t\t\t

\n\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\n\n\n\n\t\t\t\t\n\n\t\t\t
IBANCode BIC
FR76 3008 7338 5600 0212 8550 340CMCIFRPP
\n\n\t\t\n\n\t\n\n\t
\n\t
\n\t\n\n\t\tTermes et conditions
\n\n\t\tPas d\'escompte accordé pour paiement anticipé.
\n\t\tEn cas de non-paiement ŕ la date d\'échéance, des pénalités calculées ŕ trois fois le taux d\'intéręt légal\n\t\tseront appliquées.
\n\t\tTout retard de paiement entraînera une indemnité forfaitaire pour frais de recouvrement de 40€.
\n\n\t\n\t
\n\t
\n\t\t\n\n\t\t\t

MySy Training
\n\n\t\t\t\tMySy Training Technology (MTT), société par actions simplifiée au capital de 10 000 euros, dont le sičge\n\t\t\t\tsocial est\n\t\t\t\tsitué 2, place des magnolias, 77680, Roissy en Brie, immatriculée au Registre du Commerce et des\n\t\t\t\tSociétés sous le numéro 917 500 860 R.C.S. Melun\n\t\t\t

\n\t\t\n\t
\n\n\n' + dest = <_io.BufferedRandom name='./Invoices/invoice_FACT_20251012.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject './../img/MYSY-LOGO-BLUE.png', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.files:URLParts: ParseResult(scheme='c', netloc='', path='\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__', params='', query='', fragment=''), 'c' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': 75.0, 'height': None, 'align': None, 'id': None} +DEBUG:xhtml2pdf.files:Unrecognized scheme, assuming local file path +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 25 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 6645 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 25 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 6645 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:46:39] "GET /myclass/api/ManualSendInvoiceEmailRIB_CIC_JMJFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:50:05.888531 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:50:05] "GET /myclass/api/ManualSendInvoiceEmailRIB_CIC_JMJFormation HTTP/1.1" 308 - +INFO:root:2025-10-19 12:50:05.928323 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n\n\n\n\t
\n\t\tMysy Training Logo \n\t
\n\t\n\t\t
\n\t\t\t
\n\t\t\t\t\n\t\t\t\t
\n\t\t\t\t\n\t\t\t\t\tJMJ FORMATION
\n\t\t\t\t\t388 Chemin Long Pré
\n\t\t\t\t\t97232 Le Lamentin
\n\t\t\t\t\tMartinique\n\n\t\t\t\t
\n\n\n\t\t\t\t\n\n\t\t\t\t\tFacture n° FACT_20251012\n\n\n\t\t\t\t
\n\n\n\n\t\t\t\t\n\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t
Date de facture: 19/10/2025 Date échéance : 19/10/2025
\n\n\t\t\t\t\n\t\t\t\t\tOrigine : Contrat MTT/2025_N°0012/JMJ FORMATION
\n\t\t\t\t\tPériode : 14/10/2025 au 13/11/2025 \n\t\t\t\t\n\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\n\t\t\t\t\t\t\n\n\t\t\t\t\t
DescriptionQuantitéPrix unitaire (HT)Montant (HT)
ELYOS - Pack BASIQUE
\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t
1130 €130 €
 
\n\t\t\t\t\n\n\n\t\t\t\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t
    Montant HT: 130   €
    TVA : 11.05   €
    Montant TTC : 141,05   €
\n\n\t\t\n\t\t\t
\n\n\t\t\t\n\t\t\t\tRčglement : Virement bancaire

\n\n\n\n\n\t\t\t

\n\t\t\t\t> Relevé d\'identité bancaire\n\t\t\t

\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\n\n\n\t\t\t\t\n\n\t\t\t
BanqueCode agenceNuméro de compteClé RIB
30087338560002128550340
\n\n\t\t\t

\n\t\t\t\t> Identification internationale\n\t\t\t

\n\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\n\n\n\n\t\t\t\t\n\n\t\t\t
IBANCode BIC
FR76 3008 7338 5600 0212 8550 340CMCIFRPP
\n\n\t\t\n\n\t\n\n\t
\n\n\t\n\n\t\tTermes et conditions
\n\n\t\tPas d\'escompte accordé pour paiement anticipé.
\n\t\tEn cas de non-paiement ŕ la date d\'échéance, des pénalités calculées ŕ trois fois le taux d\'intéręt légal\n\t\tseront appliquées.
\n\t\tTout retard de paiement entraînera une indemnité forfaitaire pour frais de recouvrement de 40€.
\n\n\t\n\n\t
\n\t\t\n\n\t\t\t

MySy Training
\n\n\t\t\t\tMySy Training Technology (MTT), société par actions simplifiée au capital de 10 000 euros, dont le sičge\n\t\t\t\tsocial est\n\t\t\t\tsitué 2, place des magnolias, 77680, Roissy en Brie, immatriculée au Registre du Commerce et des\n\t\t\t\tSociétés sous le numéro 917 500 860 R.C.S. Melun\n\t\t\t

\n\t\t\n\t
\n\n\n' + dest = <_io.BufferedRandom name='./Invoices/invoice_FACT_20251012.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject './../img/MYSY-LOGO-BLUE.png', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.files:URLParts: ParseResult(scheme='c', netloc='', path='\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__', params='', query='', fragment=''), 'c' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': 75.0, 'height': None, 'align': None, 'id': None} +DEBUG:xhtml2pdf.files:Unrecognized scheme, assuming local file path +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 25 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 6645 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 15% +DEBUG:xhtml2pdf.tables:Col 3 has width 15% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 15% +DEBUG:xhtml2pdf.tables:Col 3 has width 15% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '15%', '15%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 25 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 6645 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:50:06] "GET /myclass/api/ManualSendInvoiceEmailRIB_CIC_JMJFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:50:56.738024 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:50:56] "GET /myclass/api/ManualSendInvoiceEmailRIB_CIC_JMJFormation HTTP/1.1" 308 - +INFO:root:2025-10-19 12:50:56.760418 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n\n\n\n\t
\n\t\tMysy Training Logo \n\t
\n\t\n\t\t
\n\t\t\t
\n\t\t\t\t\n\t\t\t\t
\n\t\t\t\t\n\t\t\t\t\tJMJ FORMATION
\n\t\t\t\t\t388 Chemin Long Pré
\n\t\t\t\t\t97232 Le Lamentin
\n\t\t\t\t\tMartinique\n\n\t\t\t\t
\n\n\n\t\t\t\t\n\n\t\t\t\t\tFacture n° FACT_20251012\n\n\n\t\t\t\t
\n\n\n\n\t\t\t\t\n\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t
Date de facture: 19/10/2025 Date échéance : 19/10/2025
\n\n\t\t\t\t\n\t\t\t\t\tOrigine : Contrat MTT/2025_N°0012/JMJ FORMATION
\n\t\t\t\t\tPériode : 14/10/2025 au 13/11/2025 \n\t\t\t\t\n\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\n\t\t\t\t\t\t\n\n\t\t\t\t\t
DescriptionQuantitéPrix unitaire (HT)Montant (HT)
ELYOS - Pack BASIQUE
\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t
1130 €130 €
 
\n\t\t\t\t\n\n\n\t\t\t\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t
    Montant HT: 130   €
    TVA : 11.05   €
    Montant TTC : 141,05   €
\n\n\t\t\n\t\t\t
\n\n\t\t\t\n\t\t\t\tRčglement : Virement bancaire

\n\n\n\n\n\t\t\t

\n\t\t\t\t> Relevé d\'identité bancaire\n\t\t\t

\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\n\n\n\t\t\t\t\n\n\t\t\t
BanqueCode agenceNuméro de compteClé RIB
30087338560002128550340
\n\n\t\t\t

\n\t\t\t\t> Identification internationale\n\t\t\t

\n\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\n\n\n\n\t\t\t\t\n\n\t\t\t
IBANCode BIC
FR76 3008 7338 5600 0212 8550 340CMCIFRPP
\n\n\t\t\n\n\t\n\n\t
\n\n\t\n\n\t\tTermes et conditions
\n\n\t\tPas d\'escompte accordé pour paiement anticipé.
\n\t\tEn cas de non-paiement ŕ la date d\'échéance, des pénalités calculées ŕ trois fois le taux d\'intéręt légal\n\t\tseront appliquées.
\n\t\tTout retard de paiement entraînera une indemnité forfaitaire pour frais de recouvrement de 40€.
\n\n\t\n\n\t
\n\t\t\n\n\t\t\t

MySy Training
\n\n\t\t\t\tMySy Training Technology (MTT), société par actions simplifiée au capital de 10 000 euros, dont le sičge\n\t\t\t\tsocial est\n\t\t\t\tsitué 2, place des magnolias, 77680, Roissy en Brie, immatriculée au Registre du Commerce et des\n\t\t\t\tSociétés sous le numéro 917 500 860 R.C.S. Melun\n\t\t\t

\n\t\t\n\t
\n\n\n' + dest = <_io.BufferedRandom name='./Invoices/invoice_FACT_20251012.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject './../img/MYSY-LOGO-BLUE.png', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.files:URLParts: ParseResult(scheme='c', netloc='', path='\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__', params='', query='', fragment=''), 'c' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': 75.0, 'height': None, 'align': None, 'id': None} +DEBUG:xhtml2pdf.files:Unrecognized scheme, assuming local file path +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 25 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 6645 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 25 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 6645 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:50:57] "GET /myclass/api/ManualSendInvoiceEmailRIB_CIC_JMJFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:51:54.187397 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:51:54] "GET /myclass/api/ManualSendInvoiceEmailRIB_CIC_JMJFormation HTTP/1.1" 308 - +INFO:root:2025-10-19 12:51:54.190396 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n\n\n\n\t
\n\t\tMysy Training Logo \n\t
\n\t\n\t\t
\n\t\t\t
\n\t\t\t\t\n\t\t\t\t
\n\t\t\t\t\n\t\t\t\t\tJMJ FORMATION
\n\t\t\t\t\t388 Chemin Long Pré
\n\t\t\t\t\t97232 Le Lamentin
\n\t\t\t\t\tMartinique\n\n\t\t\t\t
\n\n\n\t\t\t\t\n\n\t\t\t\t\tFacture n° FACT_20251012\n\n\n\t\t\t\t
\n\n\n\n\t\t\t\t\n\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t
Date de facture: 19/10/2025 Date échéance : 19/10/2025
\n\n\t\t\t\t\n\t\t\t\t\tOrigine : Contrat MTT/2025_N°0012/JMJ FORMATION
\n\t\t\t\t\tPériode : 14/10/2025 au 13/11/2025 \n\t\t\t\t\n\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\n\t\t\t\t\t\t\n\n\t\t\t\t\t
DescriptionQuantitéPrix unitaire (HT)Montant (HT)
ELYOS - Pack BASIQUE
\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t
1130 €130 €
 
\n\t\t\t\t\n\n\n\t\t\t\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t
    Montant HT: 130   €
    TVA : 11.05   €
    Montant TTC : 141,05   €
\n\n\t\t\n\t\t\t
\n\n\t\t\t\n\t\t\t\tRčglement : Virement bancaire

\n\n\t\t\t

\n\t\t\t\t> Relevé d\'identité bancaire\n\t\t\t

\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\n\n\n\t\t\t\t\n\n\t\t\t
BanqueCode agenceNuméro de compteClé RIB
30087338560002128550340
\n\n\t\t\t

\n\t\t\t\t> Identification internationale\n\t\t\t

\n\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\n\n\n\n\t\t\t\t\n\n\t\t\t
IBANCode BIC
FR76 3008 7338 5600 0212 8550 340CMCIFRPP
\n\n\t\t\n\n\t\n\n\t
\n\t
\n\n\t\n\n\t\tTermes et conditions
\n\n\t\tPas d\'escompte accordé pour paiement anticipé.
\n\t\tEn cas de non-paiement ŕ la date d\'échéance, des pénalités calculées ŕ trois fois le taux d\'intéręt légal\n\t\tseront appliquées.
\n\t\tTout retard de paiement entraînera une indemnité forfaitaire pour frais de recouvrement de 40€.
\n\n\t\n\n\t
\n\t\t\n\n\t\t\t

MySy Training
\n\n\t\t\t\tMySy Training Technology (MTT), société par actions simplifiée au capital de 10 000 euros, dont le sičge\n\t\t\t\tsocial est\n\t\t\t\tsitué 2, place des magnolias, 77680, Roissy en Brie, immatriculée au Registre du Commerce et des\n\t\t\t\tSociétés sous le numéro 917 500 860 R.C.S. Melun\n\t\t\t

\n\t\t\n\t
\n\n\n' + dest = <_io.BufferedRandom name='./Invoices/invoice_FACT_20251012.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject './../img/MYSY-LOGO-BLUE.png', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.files:URLParts: ParseResult(scheme='c', netloc='', path='\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__', params='', query='', fragment=''), 'c' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': 75.0, 'height': None, 'align': None, 'id': None} +DEBUG:xhtml2pdf.files:Unrecognized scheme, assuming local file path +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 25 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 6645 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 25 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 6645 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:51:54] "GET /myclass/api/ManualSendInvoiceEmailRIB_CIC_JMJFormation/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:54:49.704823 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:54:49.710824 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:54:49.716824 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:54:49.727341 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:54:49] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:54:49] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:54:49.764343 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:54:49] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:54:49] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:54:49.775338 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:54:49.784344 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:54:50] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:54:51] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:54:53.591514 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:54:53.594531 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:54:53] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:54:53] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:54:58.567556 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:54:58] "POST /myclass/api/Get_Given_Line_Of_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:55:14.534373 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:55:14.537370 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:14] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:55:15.129895 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:55:15.132933 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:15] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:15] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:16] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:55:30.298993 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:55:30.301997 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:30] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:30] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:55:36.298753 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:36] "POST /myclass/api/Create_Invoice_Avoir_Total/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:55:36.371077 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:55:36.374079 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:55:36.379120 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:55:36.385110 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:36] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:36] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:36] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:37] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:55:39.295182 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:55:39.298179 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:39] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:55:39.719350 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:55:39.720343 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:39] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:40] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:55:41] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:56:06.272048 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:56:06.274027 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:56:06] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:56:06] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:56:19.739642 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:56:19] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:56:19.957531 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:56:19.960531 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:56:19.963548 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:56:19] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:56:19] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:56:19] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:56:37.170916 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

 

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_76 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Partner_Invoice_NEW_Invoice_76.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

 

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_76 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Invoice_Signe_19_10_2025_55.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 826 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 826 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:56:38] "POST /myclass/api/Invoice_Inscrption_With_Split_Session_By_Inscription_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:56:38.428325 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:56:39] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:57:16.096272 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:57:16.099272 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:57:16.103272 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:57:16.105272 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:57:16] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:57:16] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:57:16] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:57:16.120273 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:57:16] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:57:16.154295 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:57:16.157282 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:57:16] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:57:16] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:57:32.363531 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:57:32.367528 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:57:32] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:57:32] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:57:41.251175 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:57:41.254148 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:57:41] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:57:41] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:57:54.838963 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:57:54] "GET /myclass/api/GerneratePDF_Partner_Invoice/JXT3OAh0wK_bmdmZ9V3_K4gCtfktxUiFCA/68f4c3e5b2209aad16855997 HTTP/1.1" 200 - +INFO:root:2025-10-19 12:59:16.983534 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:59:16] "POST /myclass/api/Get_Personnalisable_Collection/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:59:17.002532 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:59:17] "POST /myclass/api/Get_List_Partner_Document_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:59:23.714960 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:59:23] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 12:59:25.603028 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 12:59:25.615938 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:59:25] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 12:59:25] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 13:02:33.892100 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 13:02:33.893100 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 13:02:33.893100 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 13:02:33.893100 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 13:02:33.893100 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 13:22:48.266800 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 13:22:48.266800 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 13:22:48.266800 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 13:22:48.266800 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 13:22:48.267786 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 13:23:05.559929 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 13:23:05.559929 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 13:23:05.559929 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 13:23:05.559929 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 13:23:05.559929 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 13:27:20.662719 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:20] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:27:20.716750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:20] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:27:29.551837 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:27:29.554347 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:27:29.557378 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:29] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:27:29.564385 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:29] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:29] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:27:29.578382 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:29] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:27:29.603151 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:27:29.605151 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:29] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:30] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:27:34.853110 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:27:34.856105 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:34] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:34] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:27:38.134512 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:38] "POST /myclass/api/Create_Invoice_Avoir_Total/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:27:38.243210 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:27:38.246207 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:27:38.247208 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:27:38.253207 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:38] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:38] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:38] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:39] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:27:40.780422 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:27:40.783420 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:40] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:27:41.339012 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:27:41.343016 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:41] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:41] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:42] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:27:57.893659 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

 

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_77 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Partner_Invoice_NEW_Invoice_77.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

 

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_77 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Invoice_Signe_19_10_2025_29.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 816 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 816 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:59] "POST /myclass/api/Invoice_Inscrption_With_Split_Session_By_Inscription_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:27:59.131291 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:27:59] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:28:07.127606 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:28:07.130605 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:28:07.133606 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:28:07] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:28:07.139604 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:28:07.145610 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:28:07] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:28:07] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:28:07] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:28:07.188117 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:28:07.190117 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:28:07] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:28:08] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:28:09.009854 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:28:09] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:28:09.056370 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:28:09] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:28:11.007819 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:28:11] "GET /myclass/api/GerneratePDF_Partner_Invoice/JXT3OAh0wK_bmdmZ9V3_K4gCtfktxUiFCA/68f4cb3d8191aabe4f2d9366 HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 13:31:16.561339 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 13:31:16.561339 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 13:31:16.561339 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 13:31:16.561339 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 13:31:16.561339 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 13:31:16.638887 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:31:16.640885 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:31:16.641887 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:16] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:31:16.646402 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:31:16.650821 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:31:16.654600 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:16] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:31:16.658605 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:16] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:16] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:16] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:17] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:31:20.558825 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:31:20.560825 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:20] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:20] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:31:23.413583 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:23] "POST /myclass/api/Create_Invoice_Avoir_Total/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:31:23.489940 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:31:23.491938 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:31:23.494938 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:31:23.499938 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:23] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:23] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:23] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:24] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:31:29.844285 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:31:29.846286 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:29] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:31:30.352367 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:31:30.354365 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:31:30.360381 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:31:30.367366 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:31:30.370367 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:30] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:30] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:30] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:31:30.831054 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:31:30.836018 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:30] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:31] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:31] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:31] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:31] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:31:45.945267 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

 

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_78 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Partner_Invoice_NEW_Invoice_78.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

 

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_78 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Invoice_Signe_19_10_2025_35.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 823 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 823 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:47] "POST /myclass/api/Invoice_Inscrption_With_Split_Session_By_Inscription_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:31:47.087210 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:31:48] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 13:34:15.480316 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 13:34:15.480316 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 13:34:15.481316 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 13:34:15.481316 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 13:34:15.481316 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 13:34:16.855996 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:34:16.863998 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:34:16.879997 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:34:16] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:34:16.900000 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:34:16.910529 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:34:16] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:34:16.927084 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:34:16.934629 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:34:16] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:34:16] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:34:18] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:34:19] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:34:20.452499 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:34:20.456473 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:34:20] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:34:20] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:34:22.782460 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:34:22] "GET /myclass/api/GerneratePDF_Partner_Invoice/JXT3OAh0wK_bmdmZ9V3_K4gCtfktxUiFCA/68f4cc2114c6c360131447e6 HTTP/1.1" 200 - +INFO:root:2025-10-19 13:35:01.599098 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:01] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:35:07.407348 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:07] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:35:07.449349 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:07] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:35:15.653750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:15] "POST /myclass/api/Create_Invoice_Avoir_Total/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:35:15.744322 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:35:15.757344 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:35:15.767345 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:35:15.786381 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:15] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:15] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:16] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:17] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:35:21.146518 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:35:21.149517 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:35:21.150517 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:35:21.153516 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:21] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:21] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:35:21.166536 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:21] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:21] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:35:21.202535 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:35:21.205535 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:21] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:22] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:35:24.350979 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:35:24.353993 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:24] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:35:25.262485 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:35:25.265485 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:35:25.270595 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:25] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:35:25.279486 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:35:25.280485 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:25] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:25] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:25] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:25] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:25] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:35:26.245796 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:35:26.248797 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:26] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:26] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:35:35.660110 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

sssssssss

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_79 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Partner_Invoice_NEW_Invoice_79.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

sssssssss

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_79 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Invoice_Signe_19_10_2025_72.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 829 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 829 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:36] "POST /myclass/api/Invoice_Inscrption_With_Split_Session_By_Inscription_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:35:36.549309 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:35:37] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:36:18.368784 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:36:18] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:36:18.393780 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:36:18.404814 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:36:18.410292 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:36:18] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:36:18] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:36:18.430306 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:36:18] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:36:18.444823 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:36:18.468858 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:36:19] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:36:21.169591 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:36:21.175577 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:36:21] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:36:21] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:36:22.559086 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:36:22] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:36:22] "GET /myclass/api/GerneratePDF_Partner_Invoice/JXT3OAh0wK_bmdmZ9V3_K4gCtfktxUiFCA/68f4cd0745c45d01e9d24971 HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 13:42:31.730371 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 13:42:31.730371 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 13:42:31.730371 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 13:42:31.731371 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 13:42:31.731371 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 13:43:21.856071 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 13:43:21.856071 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 13:43:21.856071 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 13:43:21.856071 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 13:43:21.857070 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 13:44:36.183688 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 13:44:36.183688 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 13:44:36.183688 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 13:44:36.183688 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 13:44:36.183688 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 13:45:08.419191 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 13:45:08.419191 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 13:45:08.419191 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 13:45:08.419191 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 13:45:08.419191 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 13:47:50.794148 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:47:50] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:48:29.990708 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:48:30] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:48:30.039318 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:48:30] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:48:39.446081 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:48:39] "POST /myclass/api/Create_Invoice_Avoir_Total/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:48:39.554743 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:48:39.556742 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:48:39.560742 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:48:39.566745 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:48:39] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:48:39] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:48:39] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:48:40] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:48:44.007020 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:48:44.010014 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:48:44] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:48:44.525035 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:48:44.529023 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:48:44] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:48:45] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:48:45] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:48:54.208297 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

sssssssss

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_80 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Partner_Invoice_NEW_Invoice_80.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

sssssssss

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_80 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Invoice_Signe_19_10_2025_54.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 822 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 822 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:48:55] "POST /myclass/api/Invoice_Inscrption_With_Split_Session_By_Inscription_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:48:55.698722 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:48:56] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:49:39.261747 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:49:39] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:49:39.274810 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:49:39.285383 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:49:39.291381 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:49:39] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:49:39.299366 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:49:39] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:49:39.315366 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:49:39] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:49:39.327381 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:49:41] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:49:42.486113 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:49:42] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:49:42.502502 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:49:42] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:49:44.338817 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:49:44] "GET /myclass/api/GerneratePDF_Partner_Invoice/JXT3OAh0wK_bmdmZ9V3_K4gCtfktxUiFCA/68f4d02623eaca59cb0fff1d HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:49:51] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 13:53:18.467241 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 13:53:18.467241 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 13:53:18.468229 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 13:53:18.468229 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 13:53:18.468229 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 13:53:19.054209 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:53:19] "POST /myclass/api/Create_Invoice_Avoir_Total/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:53:19.230297 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:53:19.235847 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:53:19.243875 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:53:19.247886 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:53:19] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:53:19] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:53:19] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:53:20] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:53:23.478587 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:53:23.481120 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:53:23] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:53:23.995583 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:53:23.999530 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:53:24] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:53:24] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:53:25] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:53:33.943408 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

sssssssss

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_81 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
29/09/2025 - 07/10/2025
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Partner_Invoice_NEW_Invoice_81.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

sssssssss

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_81 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
29/09/2025 - 07/10/2025
\n
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Invoice_Signe_19_10_2025_43.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 813 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 813 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:53:35] "POST /myclass/api/Invoice_Inscrption_With_Split_Session_By_Inscription_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:53:35.311320 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:53:36] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:54:14.988653 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:54:14.992649 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:54:14] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:54:15.000658 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:54:15.006658 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:54:15.014801 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:54:15] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:54:15] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:54:15] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:54:15.059329 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:54:15.062316 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:54:15] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:54:17.639246 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:54:17.646225 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:54:17] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:54:17] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:54:17] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:54:19.061289 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:54:19] "GET /myclass/api/GerneratePDF_Partner_Invoice/JXT3OAh0wK_bmdmZ9V3_K4gCtfktxUiFCA/68f4d13d731b57703cd5d00d HTTP/1.1" 200 - +INFO:root:2025-10-19 13:55:45.465513 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:55:45] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:18.623083 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:18] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:18.670229 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:18] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:22.740417 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:22] "POST /myclass/api/Create_Invoice_Avoir_Total/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:22.851903 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:57:22.854901 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:57:22.858901 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:57:22.863905 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:22] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:22] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:23] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:24] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:26.343636 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:57:26.347633 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:26] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:26.805654 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:57:26.806652 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:26] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:27] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:28] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:32.453386 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

sssssssss

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_82 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
29/09/2025 - 07/10/2025
\n
 
\n  ouii   tt ccc ommentttdddsdqqd - INSCCCC uuu - iiiiiiiiiiiiimeomooossqsds INCS yy
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Partner_Invoice_NEW_Invoice_82.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

sssssssss

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_82 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
29/09/2025 - 07/10/2025
\n
 
\n  ouii   tt ccc ommentttdddsdqqd - INSCCCC uuu - iiiiiiiiiiiiimeomooossqsds INCS yy
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Invoice_Signe_19_10_2025_61.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 824 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 824 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:33] "POST /myclass/api/Invoice_Inscrption_With_Split_Session_By_Inscription_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:33.650395 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:34] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:39.262540 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:39] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:39.277535 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:57:39.291552 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:39] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:39.307560 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:39] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:39.323115 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:57:39.333155 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:39] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:39.338139 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:41] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:42.141057 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 13:57:42.165137 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:42] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:42] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:57:44.122557 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:44] "GET /myclass/api/GerneratePDF_Partner_Invoice/JXT3OAh0wK_bmdmZ9V3_K4gCtfktxUiFCA/68f4d22c731b57703cd5d016 HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:57:49] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:58:05.171353 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:58:05] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:58:22.381645 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:58:22] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-19 13:58:22.443266 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 13:58:22] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-10-19 14:04:34.296107 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-10-19 14:04:34.296107 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-10-19 14:04:34.296107 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-10-19 14:04:34.297109 : ++ FLASK PORT 5001 ++ +INFO:root:2025-10-19 14:04:34.297109 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-10-19 14:04:34.540676 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:04:34] "POST /myclass/api/Create_Invoice_Avoir_Total/ HTTP/1.1" 200 - +INFO:root:2025-10-19 14:04:34.624569 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 14:04:34.626574 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 14:04:34.628601 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 14:04:34.634074 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:04:34] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:04:34] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:04:35] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:04:35] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 14:04:44.284788 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 14:04:44.286115 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 14:04:44.288667 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 14:04:44.292086 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:04:44] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-10-19 14:04:44.299105 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:04:44] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:04:44] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-19 14:04:44.831006 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 14:04:44.834989 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:04:44] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:04:45] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:04:45] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:04:45] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 14:04:53.032495 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

sssssssss

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_83 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
29/09/2025 - 07/10/2025
\n
 
\n      ccc ommentttdddsdqqd - INSCCCC uuu faire un avoirrr22 - iiiiiiiiiiiiimeomooossqsds INCS yy faire un avoirrr
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Partner_Invoice_NEW_Invoice_83.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   19/10/2025 
\n

sssssssss

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_83 

Destinataire : qsdqs


  -

\n
\n

Client : qsdqs qsdsq mysy1000formation+05@gmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
29/09/2025 - 07/10/2025
\n
 
\n      ccc ommentttdddsdqqd - INSCCCC uuu faire un avoirrr22 - iiiiiiiiiiiiimeomooossqsds INCS yy faire un avoirrr
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement :    

\n

Date échéance : 19/10/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Invoice_Signe_19_10_2025_37.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 817 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 817 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:04:53] "POST /myclass/api/Invoice_Inscrption_With_Split_Session_By_Inscription_Id/ HTTP/1.1" 200 - +INFO:root:2025-10-19 14:04:53.851948 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:04:55] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 14:05:33.135720 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 14:05:33.137688 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 14:05:33.139689 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:05:33] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-10-19 14:05:33.145688 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:05:33] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:05:33] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-10-19 14:05:33.158777 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise ŕ jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:05:33] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-10-19 14:05:33.190779 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 14:05:33.193780 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:05:33] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:05:34] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-10-19 14:05:34.764257 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-10-19 14:05:34.767253 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:05:34] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:05:34] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:root:2025-10-19 14:05:36.348847 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:05:36] "GET /myclass/api/GerneratePDF_Partner_Invoice/JXT3OAh0wK_bmdmZ9V3_K4gCtfktxUiFCA/68f4d3e58b7f78a943b87142 HTTP/1.1" 200 - +INFO:root:2025-10-19 14:05:55.474700 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:05:55] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:root:2025-10-19 14:06:00.117630 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:06:00] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-10-19 14:06:00.205658 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [19/Oct/2025 14:06:00] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - diff --git a/Session_Formation.py b/Session_Formation.py index 9b932fc..77c6054 100644 --- a/Session_Formation.py +++ b/Session_Formation.py @@ -69,7 +69,8 @@ def Add_Update_SessionFormation(diction): 'attestation_certif', "distantiel", "presentiel", "prix_session", 'contenu_ftion', 'lms_class_code', 'session_ondemande', 'source', 'session_id', 'session_etape', 'pays', 'formateur_id', 'titre', 'location_type', 'is_bpf', 'site_formation_id', 'price_by', 'mode_animation', 'archive', - 'ent_account_automatic', 'lms_account_automatic', 'type_session', 'entre_scolaire', 'entre_scolaire'] + 'ent_account_automatic', 'lms_account_automatic', 'type_session', 'entre_scolaire', + 'memo', 'comment'] incom_keys = diction.keys() for val in incom_keys: @@ -313,6 +314,20 @@ def Add_Update_SessionFormation(diction): mycommon.myprint(str(inspect.stack()[0][3]) + " - Le champ 'location_type' est incorrecte.") return False, "Le champ 'location_type' est incorrect." + if ("memo" in diction.keys()): + mydata['memo'] = str(diction['memo']) + if (len(str(diction['memo'])) > 1000 ): + mycommon.myprint(str(inspect.stack()[0][3]) + " - Le champ 'memo' ne doit pas faire plus 1000 caractères.") + return False, "Le champ 'memo' ne doit pas faire plus 500 caractères." + + if ("comment" in diction.keys()): + mydata['comment'] = str(diction['comment']) + if (len(str(diction['comment'])) > 1000 ): + mycommon.myprint(str(inspect.stack()[0][3]) + " - Le champ 'commentaire' ne doit pas faire plus 1000 caractères.") + return False, "Le champ 'commentaire' ne doit pas faire plus 500 caractères." + + + if ("entre_scolaire" in diction.keys()): mydata['entre_scolaire'] = str(diction['entre_scolaire']).lower() if (str(diction['entre_scolaire']).lower() not in MYSY_GV.TRAINING_ENTREE_SCOLAIRE): @@ -1780,6 +1795,18 @@ def GetAllValideSessionPartner_List_Without_Scope_Action(diction): else: val['entre_scolaire'] = "" + if ("memo" in retVal.keys()): + val['memo'] = retVal['memo'] + else: + val['memo'] = "" + + + if ("comment" in retVal.keys()): + val['comment'] = retVal['comment'] + else: + val['comment'] = "" + + if ("is_bpf" in retVal.keys()): val['is_bpf'] = retVal['is_bpf'] else: @@ -1960,6 +1987,16 @@ def GetAllValideSessionPartner_List(diction): else: val['entre_scolaire'] = "" + if ("memo" in retVal.keys()): + val['memo'] = retVal['memo'] + else: + val['memo'] = "" + + if ("comment" in retVal.keys()): + val['comment'] = retVal['comment'] + else: + val['comment'] = "" + if ("is_bpf" in retVal.keys()): val['is_bpf'] = retVal['is_bpf'] @@ -2256,21 +2293,21 @@ def GetAllValideSessionPartner_List_filter_like(diction): filt_class_title = {} if ("class_title" in diction.keys()): - filt_class_title = {'title': {'$regex': str(diction['class_title']),"$options": "i"}} + filt_class_title = {'title': {'$regex': mycommon.regex_replace_cartere(str(diction['class_title'])),"$options": "i"}} filt_class_internal_url = {} if ("class_internal_url" in diction.keys()): - filt_class_internal_url = {'internal_url': {'$regex': str(diction['class_internal_url']),"$options": "i"}} + filt_class_internal_url = {'internal_url': {'$regex': mycommon.regex_replace_cartere(str(diction['class_internal_url'])),"$options": "i"}} filt_class_external_code = {} if ("class_external_code" in diction.keys()): - filt_class_external_code = {'external_code': {'$regex': str(diction['class_external_code']), "$options": "i"}} + filt_class_external_code = {'external_code': {'$regex': mycommon.regex_replace_cartere(str(diction['class_external_code'])), "$options": "i"}} filt_code_session = {} if ("code_session" in diction.keys()): - filt_code_session = {'code_session': {'$regex': str(diction['code_session']), "$options": "i"}} + filt_code_session = {'code_session': {'$regex': mycommon.regex_replace_cartere(str(diction['code_session'])), "$options": "i"}} filt_session_start_date = "" if ("session_start_date" in diction.keys()): @@ -2372,6 +2409,18 @@ def GetAllValideSessionPartner_List_filter_like(diction): else: val['entre_scolaire'] = "" + + if ("memo" in retVal.keys()): + val['memo'] = retVal['memo'] + else: + val['memo'] = "" + + if ("comment" in retVal.keys()): + val['comment'] = retVal['comment'] + else: + val['comment'] = "" + + if ("is_bpf" in retVal.keys()): val['is_bpf'] = retVal['is_bpf'] else: @@ -2747,6 +2796,16 @@ def GetAllValideSessionPartner_List_no_filter(diction): else: val['entre_scolaire'] = "" + if ("memo" in retVal.keys()): + val['memo'] = retVal['memo'] + else: + val['memo'] = "" + + if ("comment" in retVal.keys()): + val['comment'] = retVal['comment'] + else: + val['comment'] = "" + if ("is_bpf" in retVal.keys()): val['is_bpf'] = retVal['is_bpf'] else: @@ -3057,7 +3116,7 @@ def Add_Update_SessionFormation_mass(file=None, Folder=None, diction=None): 'session_status', 'date_debut_inscription', 'date_fin_inscription', 'attestation', 'formateur', 'code_session', "distanciel", "presentiel", "mode_animation", "prix_session", 'contenu_ftion', 'lms_class_code', 'session_ondemande', 'session_etape', 'formation_code_externe', 'formateur_email', 'titre', 'location_type', - 'is_bpf', 'type_session', 'entre_scolaire'] + 'is_bpf', 'type_session', 'entre_scolaire', 'memo', 'comment'] # Controle du nombre de lignes dans le fichier. total_rows = len(df) @@ -3548,7 +3607,7 @@ def Controle_Add_Update_SessionFormation_mass(saved_file=None, Folder=None, dict 'session_status', 'date_debut_inscription', 'date_fin_inscription', 'attestation', 'code_session', "distanciel", "presentiel", "mode_animation", "prix_session", 'contenu_ftion', 'lms_class_code', 'session_ondemande', 'session_etape', 'formation_code_externe','formateur_email', 'titre', 'location_type', - 'is_bpf', 'type_session', 'entre_scolaire'] + 'is_bpf', 'type_session', 'entre_scolaire', 'memo', 'comment'] # Controle du nombre de lignes dans le fichier. total_rows = len(df) @@ -3720,6 +3779,19 @@ def Controle_Add_Update_SessionFormation_mass(saved_file=None, Folder=None, dict return False, "Le champ 'entre_scolaire' est incorrect." + if ("memo" in df.keys()): + mydata['memo'] = str(df['memo'].values[n]).strip() + if (len( mydata['memo']) > 1000): + mycommon.myprint(str(inspect.stack()[0][3]) + " - Le champ 'memo' ne doit faire plus de 1000 caractères ") + return False, "Le champ 'memo' ne doit faire plus de 1000 caractères " + + if ("comment" in df.keys()): + mydata['comment'] = str(df['comment'].values[n]).strip() + if (len( mydata['comment']) > 1000): + mycommon.myprint(str(inspect.stack()[0][3]) + " - Le champ 'comment' ne doit faire plus de 1000 caractères ") + return False, "Le champ 'comment' ne doit faire plus de 1000 caractères " + + if ("is_bpf" in df.keys()): if (str(df['is_bpf'].values[n]).strip() not in ['0', '1']): @@ -4120,7 +4192,7 @@ def Add_Update_SessionFormation_mass_for_many_class(file=None, Folder=None, dict 'session_status', 'date_debut_inscription', 'date_fin_inscription', 'attestation', 'code_session', "distanciel", "presentiel", "mode_animation", "prix_session", 'contenu_ftion', 'lms_class_code', 'session_ondemande', 'session_etape', 'formation_code_externe', 'formateur_email', 'titre', 'location_type', - 'is_bpf', 'type_session', 'entre_scolaire'] + 'is_bpf', 'type_session', 'entre_scolaire', 'memo', 'comment'] # Controle du nombre de lignes dans le fichier. total_rows = len(df) @@ -4251,6 +4323,20 @@ def Add_Update_SessionFormation_mass_for_many_class(file=None, Folder=None, dict mycommon.myprint(str(inspect.stack()[0][3]) + " - Le champ 'entre_scolaire' est incorrecte.") return False, "Le champ 'entre_scolaire' est incorrect." + if ("memo" in df.keys()): + mydata['memo'] = str(df['memo'].values[n]).strip() + if (len(mydata['memo']) > 1000): + mycommon.myprint( + str(inspect.stack()[0][3]) + " - Le champ 'memo' ne doit faire plus de 1000 caractères ") + return False, "Le champ 'memo' ne doit faire plus de 1000 caractères " + + if ("comment" in df.keys()): + mydata['comment'] = str(df['comment'].values[n]).strip() + if (len(mydata['comment']) > 1000): + mycommon.myprint( + str(inspect.stack()[0][3]) + " - Le champ 'comment' ne doit faire plus de 1000 caractères ") + return False, "Le champ 'comment' ne doit faire plus de 1000 caractères " + if ("is_bpf" in df.keys()): is_bpf = str(df['is_bpf'].values[n]).strip() @@ -4668,7 +4754,7 @@ def Controle_Add_Update_SessionFormation_mass_for_many_class(saved_file=None, Fo 'session_status', 'date_debut_inscription', 'date_fin_inscription', 'attestation', 'code_session', "distanciel", "presentiel", "mode_animation", "prix_session", 'contenu_ftion', 'lms_class_code', 'session_ondemande', 'session_etape', 'formation_code_externe', 'formateur_email', 'titre', 'location_type', - 'is_bpf', 'type_session', 'entre_scolaire'] + 'is_bpf', 'type_session', 'entre_scolaire', 'memo', 'comment'] # Controle du nombre de lignes dans le fichier. total_rows = len(df) @@ -4866,6 +4952,19 @@ def Controle_Add_Update_SessionFormation_mass_for_many_class(saved_file=None, Fo mycommon.myprint(str(inspect.stack()[0][3]) + " - Le champ 'entre_scolaire' est incorrecte. Les valeurs acceptĂ©s sont : "+str(MYSY_GV.TRAINING_ENTREE_SCOLAIRE)) return False, "Le champ 'entre_scolaire' est incorrect. . Les valeurs acceptĂ©s sont : "+str(MYSY_GV.TRAINING_ENTREE_SCOLAIRE)+ " " + if ("memo" in df.keys()): + mydata['memo'] = str(df['memo'].values[n]).strip() + if (len(mydata['memo']) > 1000): + mycommon.myprint( + str(inspect.stack()[0][3]) + " - Le champ 'memo' ne doit faire plus de 1000 caractères ") + return False, "Le champ 'memo' ne doit faire plus de 1000 caractères " + + if ("comment" in df.keys()): + mydata['comment'] = str(df['comment'].values[n]).strip() + if (len(mydata['comment']) > 1000): + mycommon.myprint( + str(inspect.stack()[0][3]) + " - Le champ 'comment' ne doit faire plus de 1000 caractères ") + return False, "Le champ 'comment' ne doit faire plus de 1000 caractères " if ("is_bpf" in df.keys()): @@ -10985,7 +11084,7 @@ def Invoice_Partner_From_Session( diction): partner_invoice_line_data['order_line_formation'] = class_data[0]['internal_url'] partner_invoice_line_data['order_line_class_id'] = str(class_data[0]['_id']) - + partner_invoice_line_data['order_line_session_id'] = str(diction['session_id']) partner_invoice_line_data['order_line_qty'] = str(nb_participant_du_client) partner_invoice_line_data['order_line_prix_unitaire'] = str(prix_session) partner_invoice_line_data['order_line_montant_hors_taxes'] = str(total_ht) @@ -10993,12 +11092,13 @@ def Invoice_Partner_From_Session( diction): partner_invoice_line_data['invoice_header_id'] = str(inserted_invoice_id) partner_invoice_line_data['invoice_line_type'] = "facture" partner_invoice_line_data['invoice_header_ref_interne'] = partner_invoice_header_data['invoice_header_ref_interne'] + partner_invoice_line_data['tab_inscription_ids'] = tab_participant partner_invoice_line_data['update_by'] = str(my_partner['_id']) partner_invoice_line_data['valide'] = "1" partner_invoice_line_data['locked'] = "0" partner_invoice_line_data['partner_owner_recid'] = str(my_partner['recid']) - print(" #### partner_invoice_line_data = ", partner_invoice_line_data) + print(" #### partner_invoice_line_data 00 = ", partner_invoice_line_data) inserted_invoice_id = MYSY_GV.dbname['partner_invoice_line'].insert_one( partner_invoice_line_data).inserted_id if (not inserted_invoice_id): @@ -13378,13 +13478,14 @@ def Invoice_Partner_From_Session_By_Inscription_Id( diction): order_line_formation = titre formation order_line_qty = nb participants order_line_comment = la liste des personnes participans + tab_inscription_ids = contient l'_id des inscrits (tab_participant) """ partner_invoice_line_data = {} list_partner_invoice_line_champ = ['order_line_formation', 'order_line_qty', 'order_line_prix_unitaire', 'order_line_tax', 'order_line_tax_amount', 'order_line_montant_toutes_taxes', 'order_line_montant_hors_taxes', 'order_line_type_reduction', 'order_line_type_valeur', 'order_line_montant_reduction', 'order_header_ref_interne', 'order_line_comment', 'order_header_id', 'valide', 'locked', 'date_update', 'partner_owner_recid', 'invoice_header_ref_interne', 'invoice_line_type', - 'invoice_date', 'invoice_header_id', 'order_line_is_include_bpf', 'order_line_class_id'] + 'invoice_date', 'invoice_header_id', 'order_line_is_include_bpf', 'order_line_class_id', 'tab_inscription_ids'] # PreRemplir les champs @@ -13412,6 +13513,7 @@ def Invoice_Partner_From_Session_By_Inscription_Id( diction): nom_prenom_email_participant += local_nom+" "+local_prenom+" "+local_email+"\n" + partner_invoice_line_data['order_line_session_id'] = str(diction['session_id']) partner_invoice_line_data['order_line_formation'] = class_data[0]['internal_url'] partner_invoice_line_data['order_line_class_id'] = str(class_data[0]['_id']) partner_invoice_line_data['order_line_qty'] = str(nb_participant_du_client) @@ -13421,6 +13523,7 @@ def Invoice_Partner_From_Session_By_Inscription_Id( diction): partner_invoice_line_data['invoice_header_id'] = str(inserted_invoice_id) partner_invoice_line_data['invoice_line_type'] = "facture" partner_invoice_line_data['invoice_header_ref_interne'] = partner_invoice_header_data['invoice_header_ref_interne'] + partner_invoice_line_data['tab_inscription_ids'] = tab_participant partner_invoice_line_data['update_by'] = str(my_partner['_id']) partner_invoice_line_data['valide'] = "1" partner_invoice_line_data['locked'] = "0" @@ -13432,7 +13535,7 @@ def Invoice_Partner_From_Session_By_Inscription_Id( diction): partner_invoice_line_data['order_line_is_include_bpf'] = order_line_is_include_bpf - print(" #### partner_invoice_line_data = ", partner_invoice_line_data) + print(" #### partner_invoice_line_data 33 = ", partner_invoice_line_data) inserted_invoice_id = MYSY_GV.dbname['partner_invoice_line'].insert_one( partner_invoice_line_data).inserted_id if (not inserted_invoice_id): @@ -13460,6 +13563,14 @@ def Invoice_Partner_From_Session_By_Inscription_Id( diction): partner_invoice_line_data_detail = {} partner_invoice_line_data_detail['order_line_inscription_id'] = str(tmp_inscription_dat['_id']) partner_invoice_line_data_detail['order_line_inscription_type_apprenant'] = str(tmp_inscription_dat['type_apprenant']) + partner_invoice_line_data_detail['order_line_inscription_comment'] = str(tmp_inscription_dat['comment']) + partner_invoice_line_data_detail['order_line_inscription_memo'] = str(tmp_inscription_dat['memo']) + partner_invoice_line_data_detail['order_line_inscription_price'] = str(tmp_inscription_dat['price']) + partner_invoice_line_data_detail['order_line_inscription_email'] = str(tmp_inscription_dat['email']) + partner_invoice_line_data_detail['order_line_inscription_civilite'] = str(tmp_inscription_dat['civilite']) + partner_invoice_line_data_detail['order_line_inscription_nom'] = str(tmp_inscription_dat['nom']) + partner_invoice_line_data_detail['order_line_inscription_prenom'] = str(tmp_inscription_dat['prenom']) + if( "modefinancement" in tmp_inscription_dat.keys()): partner_invoice_line_data_detail['order_line_inscription_modefinancement'] = str(tmp_inscription_dat['modefinancement']) @@ -13468,6 +13579,7 @@ def Invoice_Partner_From_Session_By_Inscription_Id( diction): partner_invoice_line_data_detail['order_line_formation'] = class_data[0]['internal_url'] partner_invoice_line_data_detail['order_line_class_id'] = str(class_data[0]['_id']) + partner_invoice_line_data['order_line_session_id'] = str(diction['session_id']) partner_invoice_line_data_detail['order_line_prix_unitaire'] = str(prix_session) partner_invoice_line_data_detail['order_line_qty'] = "1" @@ -13489,7 +13601,7 @@ def Invoice_Partner_From_Session_By_Inscription_Id( diction): partner_invoice_line_data_detail['locked'] = "0" partner_invoice_line_data_detail['partner_owner_recid'] = str(my_partner['recid']) - print(" #### partner_invoice_line_data = ", partner_invoice_line_data) + print(" #### partner_invoice_line_data 77 = ", partner_invoice_line_data) inserted_invoice_id = MYSY_GV.dbname['partner_invoice_line_detail'].insert_one( partner_invoice_line_data_detail).inserted_id @@ -13970,7 +14082,7 @@ def Invoice_Splited_Partner_From_Session_By_Inscription_Id( diction): list_partner_invoice_line_champ = ['order_line_formation', 'order_line_qty', 'order_line_prix_unitaire', 'order_line_tax', 'order_line_tax_amount', 'order_line_montant_toutes_taxes', 'order_line_montant_hors_taxes', 'order_line_type_reduction', 'order_line_type_valeur', 'order_line_montant_reduction', 'order_header_ref_interne', 'order_line_comment', 'order_header_id', 'valide', 'locked', 'date_update', 'partner_owner_recid', 'invoice_header_ref_interne', 'invoice_line_type', - 'invoice_date', 'invoice_header_id', 'order_line_class_id'] + 'invoice_date', 'invoice_header_id', 'order_line_class_id', 'order_line_session_id'] # PreRemplir les champs @@ -14001,6 +14113,8 @@ def Invoice_Splited_Partner_From_Session_By_Inscription_Id( diction): partner_invoice_line_data['order_line_formation'] = class_data[0]['internal_url'] partner_invoice_line_data['order_line_class_id'] = str(class_data[0]['_id']) + partner_invoice_line_data['order_line_session_id'] = str(diction['session_id']) + partner_invoice_line_data['order_line_qty'] = str(nb_participant_du_client) partner_invoice_line_data['order_line_prix_unitaire'] = str(prix_session) partner_invoice_line_data['order_line_montant_hors_taxes'] = str(total_ht) @@ -14008,6 +14122,7 @@ def Invoice_Splited_Partner_From_Session_By_Inscription_Id( diction): partner_invoice_line_data['invoice_header_id'] = str(inserted_invoice_id) partner_invoice_line_data['invoice_line_type'] = "facture" partner_invoice_line_data['invoice_header_ref_interne'] = partner_invoice_header_data['invoice_header_ref_interne'] + partner_invoice_line_data['tab_inscription_ids'] = tab_participant order_line_is_include_bpf = "" if ("is_bpf" in session_data.keys()): @@ -14019,7 +14134,7 @@ def Invoice_Splited_Partner_From_Session_By_Inscription_Id( diction): partner_invoice_line_data['locked'] = "0" partner_invoice_line_data['partner_owner_recid'] = str(my_partner['recid']) - print(" #### partner_invoice_line_data = ", partner_invoice_line_data) + print(" #### partner_invoice_line_data 11 = ", partner_invoice_line_data) inserted_invoice_id = MYSY_GV.dbname['partner_invoice_line'].insert_one( partner_invoice_line_data).inserted_id if (not inserted_invoice_id): @@ -14031,11 +14146,9 @@ def Invoice_Splited_Partner_From_Session_By_Inscription_Id( diction): tab_date_invoice.append(str(now)) """ - 27/08/2024 - update pour faire le BPF - - on va crĂ©er une table de detail qui reprend le detail des inscription - - """ + 27/08/2024 - update pour faire le BPF + on va crĂ©er une table de detail qui reprend le detail des inscription + """ order_line_montant_hors_taxes_par_apprenant = round(total_ht , 2) for tmp_inscription_dat in MYSY_GV.dbname['inscription'].find({'session_id': str(diction['session_id']), @@ -14050,9 +14163,19 @@ def Invoice_Splited_Partner_From_Session_By_Inscription_Id( diction): partner_invoice_line_data_detail = {} partner_invoice_line_data_detail['order_line_inscription_id'] = str(tmp_inscription_dat['_id']) partner_invoice_line_data_detail['order_line_inscription_type_apprenant'] = str(tmp_inscription_dat['type_apprenant']) + partner_invoice_line_data_detail['order_line_inscription_comment'] = str(tmp_inscription_dat['comment']) + partner_invoice_line_data_detail['order_line_inscription_memo'] = str(tmp_inscription_dat['memo']) + partner_invoice_line_data_detail['order_line_inscription_price'] = str(tmp_inscription_dat['price']) + partner_invoice_line_data_detail['order_line_inscription_email'] = str(tmp_inscription_dat['email']) + partner_invoice_line_data_detail['order_line_inscription_civilite'] = str( + tmp_inscription_dat['civilite']) + partner_invoice_line_data_detail['order_line_inscription_nom'] = str(tmp_inscription_dat['nom']) + partner_invoice_line_data_detail['order_line_inscription_prenom'] = str(tmp_inscription_dat['prenom']) + partner_invoice_line_data_detail['order_line_inscription_modefinancement'] = str(tmp_inscription_dat['modefinancement']) partner_invoice_line_data_detail['order_line_formation'] = class_data[0]['internal_url'] partner_invoice_line_data_detail['order_line_class_id'] = str(class_data[0]['_id']) + partner_invoice_line_data['order_line_session_id'] = str(diction['session_id']) partner_invoice_line_data_detail['order_line_prix_unitaire'] = str(prix_session) partner_invoice_line_data_detail['order_line_montant_hors_taxes'] = str(total_ht) @@ -14074,7 +14197,7 @@ def Invoice_Splited_Partner_From_Session_By_Inscription_Id( diction): partner_invoice_line_data_detail['locked'] = "0" partner_invoice_line_data_detail['partner_owner_recid'] = str(my_partner['recid']) - print(" #### partner_invoice_line_data = ", partner_invoice_line_data) + print(" #### partner_invoice_line_data 22= ", partner_invoice_line_data) inserted_invoice_id = MYSY_GV.dbname['partner_invoice_line_detail'].insert_one( partner_invoice_line_data_detail).inserted_id """ @@ -14417,11 +14540,41 @@ def Invoice_Create_Secure_E_Document(diction): """ user['order_line_type_article'] = "formation" + """ + 19/10/2025 - aller recuperer les donnĂ©es des inscrits en faisant un lien entre partner_invoice_line['tab_inscription_ids'] + et partner_invoice_line_detail['order_line_inscription_id'] + """ + tab_inscription = [] + for inscription_id in retval['tab_inscription_ids']: + print(" ## ICI QURYYY = ", {'order_line_inscription_id':str(inscription_id), + 'valide':'1', 'locked':'0', + 'partner_owner_recid':str(retval['partner_owner_recid']), + 'invoice_header_ref_interne':str(retval['invoice_header_ref_interne'])}) + + invoice_inscription_id_data = MYSY_GV.dbname['partner_invoice_line_detail'].find_one({'order_line_inscription_id':str(inscription_id), + 'valide':'1', 'locked':'0', + 'partner_owner_recid':str(retval['partner_owner_recid']), + 'invoice_header_ref_interne':str(retval['invoice_header_ref_interne'])}, + {'order_line_inscription_type_apprenant':1, + 'order_line_inscription_comment':1, + 'order_line_inscription_memo':1, + 'order_line_inscription_price':1, + 'order_line_inscription_modefinancement':1, + 'order_line_inscription_nom':1, + 'order_line_inscription_prenom': 1, + 'order_line_inscription_email': 1, + 'order_line_inscription_civilite': 1, + }) + tab_inscription.append(invoice_inscription_id_data) + + print(" UUU tab_inscription = ", tab_inscription) + user['inscription_data'] = tab_inscription + Order_header_lines_data.append(user) """ - Recuperation des produits et services - """ + Recuperation des produits et services + """ query = query = [{'$match': {'$and': [filt_order_header_order_id, {'partner_owner_recid': str(my_partner['recid'])}]}}, {'$lookup': { @@ -14577,7 +14730,7 @@ def Invoice_Create_Secure_E_Document(diction): convention_dictionnary_data['order_header'] = Order_header_data convention_dictionnary_data['order_lines'] = Order_header_lines_data - #print(" ### Order_header_lines_data === ", Order_header_lines_data) + print(" ### Order_header_lines_data === ", Order_header_lines_data) # sourceHtml = contenu_doc_Template.render(params=Order_header_data, param_order_lines=Order_header_lines_data, company_data=company_data) @@ -15651,7 +15804,7 @@ def Add_SessionFormation_From_Quotation_Line(diction): 'lms_class_code', 'session_ondemande', 'source', 'session_etape', 'pays', 'formateur_id', 'titre', 'location_type', 'is_bpf', 'site_formation_id', 'price_by', - 'quotation_line_id', 'resa_inscrit', 'entre_scolaire'] + 'quotation_line_id', 'resa_inscrit', 'entre_scolaire', 'memo', 'comment'] incom_keys = diction.keys() for val in incom_keys: diff --git a/Template/invoice_RIB_PortCities_perso_tpl.html b/Template/invoice_RIB_PortCities_perso_tpl.html index f7f287d..048a99e 100644 --- a/Template/invoice_RIB_PortCities_perso_tpl.html +++ b/Template/invoice_RIB_PortCities_perso_tpl.html @@ -10,13 +10,13 @@
-
+
{{json_data.client_name}}
{{json_data.client_address}}
{{json_data.client_zip_ville}}
- {{json_data.client_pays}}
+ {{json_data.client_pays}}
@@ -28,7 +28,7 @@
- + @@ -42,7 +42,7 @@
- Origine : {{json_data.orign_order}}
+ Origine : {{json_data.orign_order}}
Période : {{json_data.periode}}
@@ -51,22 +51,23 @@ style="padding:12px 0px;text-align:left;font-family:Georgia, 'Times New Roman', Times, serif;color:#454349;font-size:0.9rem;width:100%;float:right;text-align:left;">
- - - - + + + + - - - - + + + + - - + + @@ -100,18 +101,14 @@
DescriptionQuantitéPrix unitaire (HT)Montant (HT)DescriptionQuantitéPrix unitaire (HT)Montant (HT)
{{json_data.packs}}
- -
{{json_data.qty}}{{json_data.unit_price}}{{json_data.montant}} {{json_data.packs}}
+ +
{{json_data.qty}}{{json_data.unit_price}}{{json_data.montant}}
 {{json_data.total_ttc}}  €
- -
-
+ +

Règlement : Virement bancaire

- - -

> Relevé d'identité bancaire

@@ -172,10 +169,22 @@
- +

-
+ +
+ + Termes et conditions
+ + Pas d'escompte accordé pour paiement anticipé.
+ En cas de non-paiement à la date d'échéance, des pénalités calculées à trois fois le taux d'intérêt légal + seront appliquées.
+ Tout retard de paiement entraînera une indemnité forfaitaire pour frais de recouvrement de 40€.
+ +
+