diff --git a/.idea/workspace.xml b/.idea/workspace.xml index 8cc70ed..8672a5f 100644 --- a/.idea/workspace.xml +++ b/.idea/workspace.xml @@ -4,29 +4,22 @@ - @@ -536,6 +528,7 @@ - \ No newline at end of file diff --git a/E_Sign_Document.py b/E_Sign_Document.py index aa32d71..676615f 100644 --- a/E_Sign_Document.py +++ b/E_Sign_Document.py @@ -111,7 +111,8 @@ def Create_E_Document(diction): Verification des input acceptés """ field_list = ['token', 'file_name', 'related_collection', 'related_collection_id', - 'email_destinataire', 'source_document', 'type', 'file_cononical_name'] + 'email_destinataire', 'source_document', 'type', 'file_cononical_name', + 'class_id', 'session_d'] incom_keys = diction.keys() for val in incom_keys: @@ -177,6 +178,17 @@ def Create_E_Document(diction): new_diction['statut'] = '0' new_diction['valide'] = '1' new_diction['locked'] = "0" + if( 'class_id' in diction.keys()): + new_diction['class_id'] = diction['class_id'] + else: + new_diction['class_id'] = "" + + if ('session_d' in diction.keys()): + new_diction['session_d'] = diction['session_d'] + else: + new_diction['session_d'] = "" + + new_diction['secret_key_open'] = str(secret_key) new_diction['email_destinataire'] = str(diction['email_destinataire']) new_diction['source_document'] = str(diction['source_document']) @@ -229,7 +241,8 @@ def Create_E_Invoice(diction): Verification des input acceptés """ field_list = ['token', 'file_name', 'related_collection', 'related_collection_id', - 'email_destinataire', 'source_document', 'type', 'file_cononical_name'] + 'email_destinataire', 'source_document', 'type', 'file_cononical_name', + 'class_id', 'session_d'] incom_keys = diction.keys() for val in incom_keys: @@ -295,6 +308,17 @@ def Create_E_Invoice(diction): new_diction['statut'] = '0' new_diction['valide'] = '1' new_diction['locked'] = "0" + + if ('class_id' in diction.keys()): + new_diction['class_id'] = diction['class_id'] + else: + new_diction['class_id'] = "" + + if ('session_d' in diction.keys()): + new_diction['session_d'] = diction['session_d'] + else: + new_diction['session_d'] = "" + new_diction['secret_key_open'] = str(secret_key) new_diction['email_destinataire'] = str(diction['email_destinataire']) new_diction['source_document'] = str(diction['source_document']) @@ -920,8 +944,8 @@ def Create_E_Signature_For_E_Document(file_img=None, Folder=None, diction=None): with open(qr_code_img_file, "rb") as image2string: qr_code_converted_string = base64.b64encode(image2string.read()).decode() - - + outputFilename = "" + orig_file_name = "" """ On est sur une fonction sans token, mais pour recuperer des infos en mode connecté comme le dictionnaire je vais aller prendre le token du compte admin @@ -1314,8 +1338,38 @@ def Create_E_Signature_For_E_Document(file_img=None, Folder=None, diction=None): new_file['file_name_to_store'] = outputFilename + tab_key_word = "" + if("type" in e_document_data.keys() and e_document_data['type']) : + tab_key_word = str(tab_key_word).strip()+"," + else: + tab_key_word = "e-document," + + if ("file_cononical_name" in e_document_data.keys() and e_document_data['file_cononical_name'] ): + tab_key_word = tab_key_word +str(e_document_data['file_cononical_name']).strip() + + if ("signed_email" in e_document_data.keys() and e_document_data['signed_email'] ): + tab_key_word = tab_key_word +str(e_document_data['signed_email']).strip() + + + new_file['tab_key_word'] = tab_key_word + + tab_related_collection = [] + if ("class_id" in e_document_data.keys() and e_document_data['class_id'] ): + node_class = {} + node_class['related_collection'] = 'myclass' + node_class['related_collection_id'] = str(e_document_data['class_id']) + tab_related_collection.append(node_class) + + if ("session_d" in e_document_data.keys() and e_document_data['session_d']): + node_session = {} + node_session['related_collection'] = 'session_formation' + node_session['related_collection_id'] = str(e_document_data['session_d']) + tab_related_collection.append(node_session) + + + print(" ### new_file new_file = ", new_file) - local_status, local_retval = attached_file_mgt.Internal_Usage_Store_User_Downloaded_File(MYSY_GV.upload_folder, new_file) + local_status, local_retval = attached_file_mgt.Internal_Usage_Store_User_Downloaded_File(MYSY_GV.upload_folder, new_file, tab_related_collection) if( local_status is False ): print(" ## WARNONGGG Impossible de stocker le fichier") diff --git a/GlobalVariable.py b/GlobalVariable.py index 42a8926..482c167 100644 --- a/GlobalVariable.py +++ b/GlobalVariable.py @@ -3,6 +3,7 @@ Ce fichier contient les variables globales du systeme ''' from pymongo import MongoClient from spellchecker import SpellChecker + from nltk.stem.snowball import SnowballStemmer import spacy import logging diff --git a/Inscription_mgt.py b/Inscription_mgt.py index 09ecd90..7036867 100644 --- a/Inscription_mgt.py +++ b/Inscription_mgt.py @@ -585,7 +585,7 @@ def AddStagiairetoClass(diction): else: local_diction['tab_ue_ids'] = "" - #print(" ### Init_AcceptAttendeeInscription_For_Initial_Formation 11 local_diction = ",local_diction ) + print(" ### Init_AcceptAttendeeInscription_For_Initial_Formation 11 local_diction = ",local_diction ) local_inscription_liste_ue_status, local_inscription_liste_ue_retval = Init_AcceptAttendeeInscription_For_Initial_Formation( local_diction) @@ -6081,6 +6081,8 @@ cette fonction prend en entrée : - inscription_id - class_id +Important : on fait l'inscription que pour les UE qui sont marquées sur la session. Verifier la cohérence, que ces +UE soient bien sur la formation aussi. """ def Init_AcceptAttendeeInscription_For_Initial_Formation(diction): @@ -6145,7 +6147,7 @@ def Init_AcceptAttendeeInscription_For_Initial_Formation(diction): """ Suppression des données existe dans les collections : inscription_liste_ue et inscription_liste_ue_type_eval - pour l'inscrit et la formation conernée + pour l'inscrit et la formation concernée """ clean_inscription_liste_ue = MYSY_GV.dbname['inscription_liste_ue'].delete_many({"partner_owner_recid": str(my_partner['recid']), @@ -6167,7 +6169,7 @@ def Init_AcceptAttendeeInscription_For_Initial_Formation(diction): tab_ue_ids.append(tmp) """ - Recuperer les UE de la formation + Recuperer les UE de la promotion, en s'assurant qu'elle est bien configurée sur la formationformation """ tab_class_ue_id = [] @@ -6182,9 +6184,26 @@ def Init_AcceptAttendeeInscription_For_Initial_Formation(diction): if( "list_unite_enseignement" in New_retVal.keys() ): for local_val in New_retVal['list_unite_enseignement'] : - if( "tab_ue_ids" not in diction.keys() ): + # Verifier que l'UE est presente sur la session / promo + print(" ### local_val = ", local_val) + + print(" ### QRYY local_val = ", {"partner_owner_recid": str(my_partner['recid']), + 'valide': '1', + 'class_id': str(diction['class_id']), + 'list_unite_enseignement._id':str(local_val['_id'])}) + + is_ue_in_session = MYSY_GV.dbname['session_formation'].count_documents({"partner_owner_recid": str(my_partner['recid']), + 'valide': '1', + 'class_id': str(diction['class_id']), + 'list_unite_enseignement._id':str(local_val['_id'])}) + + print(" ## A INSCRIPTIONNN is_ue_in_session = ", is_ue_in_session) + + if( ("tab_ue_ids" not in diction.keys() or str(diction['tab_ue_ids']).strip() == "") and is_ue_in_session > 0 ): tab_class_ue_id.append(str(local_val['_id'])) + print(" ## A INSCRIPTIONNN2222 is_us_in_session = ", is_ue_in_session) + new_data = {} new_data['inscription_id'] = str(diction['inscription_id']) new_data['class_id'] = str(diction['class_id']) @@ -6203,6 +6222,7 @@ def Init_AcceptAttendeeInscription_For_Initial_Formation(diction): key_data['valide'] = "1" key_data['partner_owner_recid'] = str(my_partner['recid']) + print(" ### key_data = ", key_data) result = MYSY_GV.dbname['inscription_liste_ue'].find_one_and_update( key_data, @@ -6215,7 +6235,7 @@ def Init_AcceptAttendeeInscription_For_Initial_Formation(diction): " Impossible de valider l'inscription pour la formation initiale (2) ") return False, "Impossible de valider l'inscription pour la formation initiale (2) " - elif ("tab_ue_ids" in diction.keys() and str(local_val['_id']) in tab_ue_ids ): + elif ( "tab_ue_ids" in diction.keys() and str(diction['tab_ue_ids']).strip() != "" and str(local_val['_id']) in tab_ue_ids and is_ue_in_session > 0): print(" ### traitement inscription PARTIEL UEEE ", str(local_val['_id'])) tab_class_ue_id.append(str(local_val['_id'])) @@ -9800,6 +9820,8 @@ def Sent_Convention_Stagiaire_By_Email(tab_files, Folder, diction): "params": convention_dictionnary_data, } + orig_file_name = "" + outputFilename = "" # Verifier s'il s'agit d'un document à envoyer avec une version de pièce jointe. if ("joint_pdf" in courrier_template_data.keys() and str(courrier_template_data['joint_pdf']) == "1"): @@ -9881,6 +9903,9 @@ def Sent_Convention_Stagiaire_By_Email(tab_files, Folder, diction): new_e_document_diction['related_collection'] = "inscription" new_e_document_diction['related_collection_id'] = str(inscription_data['_id']) + new_e_document_diction['class_id'] = str(session_data['class_id']) + new_e_document_diction['session_d'] = str(session_data['_id']) + todays_date = str(date.today().strftime("%d/%m/%Y")) ts = datetime.now().timestamp() @@ -10083,6 +10108,46 @@ def Sent_Convention_Stagiaire_By_Email(tab_files, Folder, diction): mycommon.myprint( " WARNING : Impossible de logguer l'historique pour l'évènement : " + str(history_event_dict)) + if (orig_file_name and outputFilename): + new_file = {} + new_file['token'] = diction['token'] + type_document = "Convention" + + new_file['file_business_object'] = str(orig_file_name) + + new_file['file_name'] = str(orig_file_name) + new_file['status'] = "1" + new_file['type_document'] = str(type_document) + + new_file['object_owner_collection'] = "inscription" + new_file['object_owner_id'] = str(diction['inscription_id']) + + new_file['file_name_to_store'] = outputFilename + + tab_key_word = "convention," + str(class_data['external_code']) + "," + str( + session_data['code_session']) + new_file['tab_key_word'] = tab_key_word + + tab_related_collection = [] + if (class_data): + node_class = {} + node_class['related_collection'] = 'myclass' + node_class['related_collection_id'] = str(class_data['_id']) + tab_related_collection.append(node_class) + + if (session_data): + node_session = {} + node_session['related_collection'] = 'session_formation' + node_session['related_collection_id'] = str(session_data['_id']) + tab_related_collection.append(node_session) + + + # print(" ### new_file new_file = ", new_file) + local_status, local_retval = attached_file_mgt.Internal_Usage_Store_User_Downloaded_File( + MYSY_GV.upload_folder, new_file, tab_related_collection) + + if (local_status is False): + print(" ## WARINNGGG Impossible de stocker le fichier de Convocation ") return True, "L'email a été correctement envoyé " @@ -11703,14 +11768,14 @@ def Sent_Convention_Stagiaire_By_Email_By_Partner_client(tab_files_name_full_pat # Recuperation du titre de la formation - class_data = MYSY_GV.dbname['myclass'].find({'internal_url': str(session_data['class_internal_url']), + class_data = MYSY_GV.dbname['myclass'].find_one({'internal_url': str(session_data['class_internal_url']), 'valide': '1', 'partner_owner_recid': str(my_partner['recid']), 'locked': '0'}) tab_class = [] - for val in class_data: - tab_class.append(val['_id']) + if class_data: + tab_class.append(class_data['_id']) # Recuperer les données du client client_data = MYSY_GV.dbname['partner_client'].find_one({'_id':ObjectId(str(diction['partner_client_id'])), @@ -11748,6 +11813,8 @@ def Sent_Convention_Stagiaire_By_Email_By_Partner_client(tab_files_name_full_pat "params": convention_dictionnary_data, } + outputFilename = "" + orig_file_name = "" # --- sujetHtml = "" # Verifier s'il s'agit d'un document à envoyer avec une version de pièce jointe. @@ -11834,6 +11901,9 @@ def Sent_Convention_Stagiaire_By_Email_By_Partner_client(tab_files_name_full_pat new_e_document_diction['related_collection'] = "partner_client" new_e_document_diction['related_collection_id'] = str(client_data['_id']) + new_e_document_diction['class_id'] = str(session_data['class_id']) + new_e_document_diction['session_d'] = str(session_data['_id']) + todays_date = str(date.today().strftime("%d/%m/%Y")) ts = datetime.now().timestamp() ts = str(ts).replace(".", "").replace(",", "")[-2:] @@ -12033,7 +12103,6 @@ def Sent_Convention_Stagiaire_By_Email_By_Partner_client(tab_files_name_full_pat diction['partner_client_id'])}) for inscription in inscription_data: - # Pour la collection inscription history_event_dict = {} history_event_dict['token'] = diction['token'] @@ -12080,9 +12149,72 @@ def Sent_Convention_Stagiaire_By_Email_By_Partner_client(tab_files_name_full_pat mycommon.myprint( " WARNING : Impossible de logguer l'historique pour l'évènement : " + str(history_event_dict)) + + """ + On va aller stocker le document + """ + # Recuperation des données du stagiaire + inscription_data = MYSY_GV.dbname['inscription'].find({'session_id': str(diction['session_id']), + 'status': '1', + 'partner_owner_recid': str(my_partner['recid']), + 'client_rattachement_id': str( + diction['partner_client_id'])}) + + if (orig_file_name and outputFilename): + new_file = {} + new_file['token'] = diction['token'] + type_document = "Convention" + + new_file['file_business_object'] = str(orig_file_name) + + new_file['file_name'] = str(orig_file_name) + new_file['status'] = "1" + new_file['type_document'] = str(type_document) + + new_file['object_owner_collection'] = "partner_client" + new_file['object_owner_id'] = str(diction['partner_client_id']) + + new_file['file_name_to_store'] = outputFilename + + tab_key_word = "convention," + str(class_data['external_code']) + "," + str( + session_data['code_session']) + new_file['tab_key_word'] = tab_key_word + + tab_related_collection = [] + if (class_data): + node_class = {} + node_class['related_collection'] = 'myclass' + node_class['related_collection_id'] = str(class_data['_id']) + tab_related_collection.append(node_class) + + if (session_data): + node_session = {} + node_session['related_collection'] = 'session_formation' + node_session['related_collection_id'] = str(session_data['_id']) + tab_related_collection.append(node_session) + + if (inscription_data): + node_inscrit = {} + node_inscrit['related_collection'] = 'inscription' + + tab_inscrit = [] + for local_inscrit in inscription_data: + tab_inscrit.append(str(local_inscrit['_id'])) + + node_inscrit['related_collection_id'] = tab_inscrit + tab_related_collection.append(node_inscrit) + + # print(" ### new_file new_file = ", new_file) + local_status, local_retval = attached_file_mgt.Internal_Usage_Store_User_Downloaded_File( + MYSY_GV.upload_folder, new_file, tab_related_collection) + + if (local_status is False): + print(" ## WARINNGGG Impossible de stocker le fichier de Convocation ") + + """ - Gestion des emails via mail_queu et internal email - """ + Gestion des emails via mail_queu et internal email + """ # Recuperation des donnes smtp (local_stpm_status, local_SMTP_COUNT_smtpsrv, local_own_smtp_value, local_SMTP_COUNT_password, local_SMTP_COUNT_user, local_SMTP_COUNT_From_User, diff --git a/Job_Cron_Common.py b/Job_Cron_Common.py index 2dc8a6b..39a9eb7 100644 --- a/Job_Cron_Common.py +++ b/Job_Cron_Common.py @@ -225,7 +225,7 @@ def Prepare_and_Send_Convocation_From_Session_By_Email(tab_files, Folder, dictio else: print(" EMAIL DE CONVOCATION DEJA ENVOYEEEE ") - return True, " Les convocations ont été correctement envoyées par emails" + return True, " Les convocations ont été correctement envoyées par email" except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() @@ -2050,7 +2050,7 @@ def Cron_Send_Attestation_From_Session_By_Email_for_not_sent(Folder, diction): return False, " L'identifiant de la session est invalide " is_warning_message = "0" - warning_message = "Les attestation ont été correctement envoyées par emails avec l'attention suivante : " + warning_message = "Les attestation ont été correctement envoyées par email avec l'attention suivante : " for attestation_formation_data in MYSY_GV.dbname['attestation_formation'].find({"session_id":str(diction['session_id']), 'partner_owner_recid':str(my_partner['recid']), @@ -2132,7 +2132,7 @@ def Cron_Send_Attestation_From_Session_By_Email_for_not_sent(Folder, diction): if (is_warning_message == "1"): return True, str(warning_message) - return True, " Les attestation ont été correctement envoyées par emails" + return True, " Les attestation ont été correctement envoyées par email" except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() @@ -3045,7 +3045,7 @@ def Cron_Send_Emargement_By_Date_By_Email_for_not_sent(Folder, diction): tab_emargement_ids = [] is_warning_message = "0" - warning_message = "Les demandes d'émargement ont été correctement envoyées par emails avec l'attention suivante : " + warning_message = "Les demandes d'émargement ont été correctement envoyées par email avec l'attention suivante : " # Recuperer la liste des emargement à envoyer pour le jour = str(todays_date) @@ -3076,7 +3076,7 @@ def Cron_Send_Emargement_By_Date_By_Email_for_not_sent(Folder, diction): if (is_warning_message == "1"): return True, str(warning_message), str(len(tab_emargement_ids)) - return True, "Les demandes d'émargement envoyées par emails", str(len(tab_emargement_ids)) + return True, "Les demandes d'émargement envoyées par email", str(len(tab_emargement_ids)) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() diff --git a/Log/log_file.log b/Log/log_file.log index 1ba16f6..367a30d 100644 --- a/Log/log_file.log +++ b/Log/log_file.log @@ -28829,3 +28829,36124 @@ INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 12:21:54] "POST /myclass/api/Get_List_U INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 12:21:54] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - INFO:root:2025-11-04 12:22:00.011657 : Security check : IP adresse '127.0.0.1' connected INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 12:22:00] "POST /myclass/api/Get_Action_Historique_List/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\main.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-04 17:28:09.803301 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-04 17:28:09.803301 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-04 17:28:09.803301 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-04 17:28:09.803301 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-04 17:28:09.803301 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-04 17:28:16.335211 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-04 17:28:16.335211 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-04 17:28:16.335211 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-04 17:28:16.335211 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-04 17:28:16.335211 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-04 17:38:36.055821 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:38:36.058838 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:38:36.061840 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:38:36.068356 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:38:36.074360 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:38:36] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:38:36.082355 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:38:36] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:38:36] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:38:36.095354 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:38:36] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:38:36.099372 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:38:36] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:38:36.105354 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:38:36] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:38:36] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:38:36.118358 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:38:36.128381 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:38:36.140355 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:38:36] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:38:36] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:38:36] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:38:36] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:38:37] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:39:50.621376 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:39:50.625378 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:39:50.627376 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:39:50.632383 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:39:50.636378 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:50] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:39:50.645384 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:50] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:39:50.656920 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:50] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:50] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:50] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:50] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:50] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:39:52.721982 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:39:52.724957 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:52] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:53] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:39:57.558197 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:39:57.560196 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:57] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:39:57.568204 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:39:57.570228 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:57] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:39:57.580711 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:57] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:57] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:39:57.621316 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:39:57.625338 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:39:57.628320 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:39:57.632880 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:39:57.638891 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:39:57.643872 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:57] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:57] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:39:57.660863 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:39:57.664862 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:57] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:39:57.684836 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:57] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:39:57.709282 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:57] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:57] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:57] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:59] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:39:59] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:01.187418 : GetAttendeeDetail_perSession - Données d'inscription incohérentes. il y a plus d'une inscription pour les critère {'session_id': '68e419c2e5fea6f5328c2007', 'email': 'mysy1000formation+04@gmail.com'} +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:01] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:04.127437 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:04.131450 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:04.134450 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:04.137978 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:04] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:04] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:04] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:04] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:05.052554 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:05.055555 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:05.059615 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:05.064582 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:05.068586 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:05] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:05.074148 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:05.080696 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:05] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:05] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:05] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:05] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:05] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:05] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:19.798883 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:19.800883 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:19.804882 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:19.809882 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:19] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:19] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:19] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:19] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:20.730276 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:20.735276 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:20.739274 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:20] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:20.749290 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:20.755329 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:20] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:20] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:20.764291 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:20.769289 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:20] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:20] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:20] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:20] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:26.534920 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:26.538915 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:26.543914 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:26.552426 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:26.562430 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:26.588430 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:26.591431 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:26.594429 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:26.599427 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:26.604435 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:26.612461 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:26.625959 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:26.632957 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:26.636966 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:26.643967 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:26.649476 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:26.668497 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:26.676528 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/Get_Given_Apprenant_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:26.688529 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/Get_Apprenant_Recorded_Image_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/Get_List_Partner_Apprenant/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:26] "POST /myclass/api/Get_Apprenant_List_Inscription/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:27] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:28] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:36.344972 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:36] "POST /myclass/api/Update_Apprenant/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:36.441494 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:36.443987 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:36.446995 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:36.453001 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:36.454018 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:36.462526 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:36] "POST /myclass/api/Get_Apprenant_Recorded_Image_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:36] "POST /myclass/api/Get_Given_Apprenant_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:36] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:36.485559 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:36] "POST /myclass/api/Get_List_Suivi_Pedagogique_No_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:36] "POST /myclass/api/Get_List_Apprenant_Notes_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:36] "POST /myclass/api/Get_List_Partner_Apprenant/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:36] "POST /myclass/api/Get_Apprenant_List_Inscription/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:49.479514 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:49.482628 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:49.487046 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:49.492059 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:49] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:49.496061 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:49.503059 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:40:49.507059 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:49] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:49.514062 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:49] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:49] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:49] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:49.527062 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:49] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:49.533062 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:49] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:49.554099 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:49] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:40:49.571090 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:49] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:49] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:49] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:40:51] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:41:16.840240 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:41:16.845249 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:41:16.848251 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:41:16.853248 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:41:16.857248 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:16] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:41:16.863836 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:16] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:41:16.868803 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:16] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:16] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:16] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:16] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:16] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:41:19.279536 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:41:19.283539 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:19] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:19] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:41:24.520500 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:41:24.523501 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:41:24.527501 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:41:24.529502 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:24] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:41:24.537519 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:24] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:24] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:24] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:25] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:41:37.571617 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:41:41.443589 : L'utilisateur destinataire de l'email est invalide +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:41] "POST /myclass/api/AddStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:41:41.481508 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:41:41.485521 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:41:41.489506 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:41:41.492504 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:41:41.496503 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:41] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:41] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:41] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:41] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:41:42] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:42:19.527486 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:42:19.528525 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:42:19.531768 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:42:19.534863 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:42:19.538913 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:42:19.540914 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:19] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:19] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:19] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:19] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:20] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:20] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:42:22.247704 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:42:22.251686 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:42:22.254690 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:42:22.258685 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:22] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:22] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:22] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:22] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:42:23.304830 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:42:23.308811 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:42:23.313813 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:42:23.318344 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:23] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:42:23.326848 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:23] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:42:23.334900 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:23] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:23] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:42:23.344368 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:23] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:23] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:23] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:42:30.970891 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:30] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:42:31.127965 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:42:31.128966 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:31] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:32] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:42:58.866747 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:42:58.868748 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:58] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:42:59.540678 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:42:59.543677 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:59] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:42:59] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:43:00] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:43:01.640635 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:43:01.643634 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:43:01] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:43:02.302370 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:43:02.307362 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:43:02] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:43:02] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:43:03] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:43:13.055727 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:43:13] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:43:13.185753 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:43:13.189767 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:43:13] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:43:14] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:43:18.178179 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:43:18.180178 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:43:18] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:43:18.768918 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:43:18.771892 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:43:18] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:43:19] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:43:20] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:47:46.103800 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:47:46.104800 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:47:46.108806 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:47:46.112805 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:46] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:47:46.119817 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:46] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:47:46.125224 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:47:46.127226 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:46] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:47:46.134740 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:46] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:47:46.143766 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:46] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:46] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:47:46.149775 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:47:46.154186 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:47:46.160185 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:46] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:46] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:46] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:46] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:46] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:47] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:47:50.831143 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:47:50.833918 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:47:50.837850 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:47:50.841855 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:50] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:47:50.848929 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:50] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:47:50.855968 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:50] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:47:50.863486 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:50] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:50] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:50] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:50] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:47:55.319154 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:47:55.321175 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:47:55.325274 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:47:55.328785 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-04 17:47:55.334984 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:55] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-04 17:47:55.346084 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:55] "POST /myclass/api/Get_List_Survey_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:55] "POST /myclass/api/Get_List_Survey_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:55] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:55] "POST /myclass/api/Get_List_Specific_Survey_Internal_Code/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [04/Nov/2025 17:47:55] "POST /myclass/api/Get_List_Survey_with_filter/ HTTP/1.1" 200 - +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-06 12:32:59.977640 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-06 12:32:59.978658 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-06 12:32:59.978658 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-06 12:32:59.978658 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-06 12:32:59.981746 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-06 12:34:11.777164 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-06 12:34:11.777164 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-06 12:34:11.778176 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-06 12:34:11.778176 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-06 12:34:11.778176 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-06 12:34:11.910080 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:11.912968 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:11.915974 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:11.917974 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:12] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:12] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:12] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:12] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:15.472485 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:15.488499 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:15.510672 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:15.520670 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:15.540719 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:15] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:15.566719 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:15.604367 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:15] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:15.683369 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:15.702745 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:18.885973 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:18.892971 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:18.919183 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:20.287844 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.294843 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.306975 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.296573 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.308873 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.310935 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.329425 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.344767 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:20.345900 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:20.350892 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.352886 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:20.356643 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:20.362618 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:20.367344 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:20.391618 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:20.402308 : Get_List_Ressource_Humaine_no_filter - impossible de récupérer les données de l'utilisateur +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:20.422610 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:20.432820 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:20.443439 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:20.464738 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:20.501345 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:20.575979 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.595306 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:20.613148 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:20.619766 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:20.622893 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.634750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:20.676510 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:20.686050 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.714571 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:20.727338 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:20.736989 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.756887 : Get_Partner_List_Partner_Client - impossible de récupérer les données de l'utilisateur +INFO:root:2025-11-06 12:34:20.758784 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:20.761808 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.769538 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:20.770527 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:20.808346 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:20.829964 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:20.878416 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:20.904650 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:20.915525 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.923642 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:20.942328 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:20] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:20.976489 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.985098 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.991906 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:20.992882 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:21.373281 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:21.375812 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:21] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:21] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:21] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:45.408466 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:45.416466 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:45] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:45.445471 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:45.457466 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:45.467478 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:root:2025-11-06 12:34:45.473251 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:45] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:45.495263 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:45.512286 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:45.522286 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:45.527098 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:45.550686 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:45.556679 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:45.560744 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:45.570707 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:45.576517 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:45.578469 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:45.600288 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:45] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:45.605230 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:45.609244 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:45] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:45] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:45.624403 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:45.640404 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:45.670613 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:45] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:45.681908 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:root:2025-11-06 12:34:45.693777 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:45.700772 : get_connected_data_from_token -'NoneType' object does not support item assignment - ERRORRRR AT Line : 605 +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:45] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:45] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:45.712772 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:root:2025-11-06 12:34:45.713816 : Check_Connexion_And_Return_Partner_Data - impossible de récupérer les données du partenaire +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:45] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:45] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:48.424387 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:48.430388 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:48.431486 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:48.435490 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:48.439488 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:48] "POST /myclass/api/get_List_domaine_formation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:48] "POST /myclass/api/Get_Suggested_Fr_Cities/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:48] "POST /myclass/api/Get_Suggested_Word/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:49] "POST /myclass/api/get_all_class/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:49.368022 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:49.381029 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:49.392578 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:49] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:49.417586 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:49] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:49] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:49] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:49.455271 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:49.477310 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:49] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:49.492979 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:49] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:49] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:49.519976 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:49] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:49.541097 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:49] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:49.564838 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:49] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:49.598914 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:49.606926 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:49.620009 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:49.632636 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:49.652206 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:49.676305 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:50.061607 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:50.068606 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:50.073617 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:50.087189 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:50.097211 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:50.139087 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:50.150116 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:50.165109 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:50.175337 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:50.189995 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:50.197002 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:50.206975 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:50.230010 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:50.244029 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:50] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:51.791508 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:51.796627 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:51.799621 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:51.803560 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:51] "POST /myclass/api/get_List_domaine_formation/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:51.905152 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/Get_Suggested_Fr_Cities/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/Get_Suggested_Word/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/get_all_class/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.530243 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:52.538272 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:52.547264 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.558795 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.575801 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.593448 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.604460 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:52.619475 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.648213 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.655230 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.687173 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.703595 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:52.705587 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.716474 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:52.718532 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:52.721475 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.727475 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.735482 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:52.738593 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.753547 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.758476 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:52.760478 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.766478 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.771544 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.778544 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:52.782743 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.786158 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.790165 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:52.794731 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:52.797717 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:52] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:55.221805 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:55] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:56.216585 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:56.221590 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:56.230697 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:56.245688 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:56] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:56.268691 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:56.285714 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:56.292714 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:56] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:56] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:56.299529 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:56] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:56] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:56.321619 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:56.328562 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:56.345518 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:56.356517 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:56] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:56] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:56] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:56] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:56] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:59.197506 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:59.204551 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:59.212244 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:59.224340 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:59] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:59.236420 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:59] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:59.249429 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:59.263092 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:59.269173 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:34:59.280171 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:59] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:59] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:59.291081 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:59] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:59.304180 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:59] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:34:59.333390 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:59] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:59] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:59] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:59] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:34:59] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:02] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:35:02.704535 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:02.708402 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:02.716614 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:02.727646 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:02.737636 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:02.748870 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:02] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:02] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:35:02.762475 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:02.777492 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:02] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:02] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:35:02.801646 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:02] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:02] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:02] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:02] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:02] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:35:09.724085 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:09.728599 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:09.732708 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:09.743290 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:09.752277 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:09] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:09] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:09] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:09] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:10] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:35:55.667194 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:55.673295 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:55.684581 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:55] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:35:55.709689 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:55.719792 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:55] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:55] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:55] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:35:55.785697 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:55.795929 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:55.805491 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:55.814676 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:55] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:55] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:35:55.833340 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:55] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:55] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:35:55.852394 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:55.860411 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:55] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:35:55.871409 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:55.880424 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:55] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:55] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:35:55.906390 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:35:55.916509 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:55] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:35:55.953744 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:55] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:56] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:56] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:35:59] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:36:08.222623 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:36:08.234723 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:36:08.267050 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:08] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:08] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:36:08.295152 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:08] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:08] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:36:08.320897 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:36:08.337891 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:08] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:08] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:36:08.357021 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:36:08.373431 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:08] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:36:08.396384 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:08] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:08] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:36:11.065084 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:36:11.069943 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:36:11.073955 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:36:11.084680 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:36:11.090679 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:11] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:11] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:11] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:11] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:11] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:36:14.099916 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:14] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:36:32.157715 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:36:32] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:37:57.545705 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:37:57.553705 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:37:57.580714 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:37:57.597862 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:37:57.614389 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:37:57.635391 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:37:57.641997 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:37:57.656017 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:37:57.677572 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:37:57.703561 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:37:57.731579 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:37:57.751914 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:37:57.774919 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:37:57.787902 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:37:57.808005 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:37:57.823900 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:37:57.841907 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:37:57.858766 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:37:57.891153 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:37:57.905159 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:37:57.917155 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:37:57.933167 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:37:57.945695 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:37:57.977060 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:57] "POST /myclass/api/Get_List_Class_Niveau_Formation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:37:58] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:00.379370 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:00.397540 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:00.413539 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:00.427560 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:00.446113 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:00.468697 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:00.489691 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:00.506705 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:00.520687 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_List_Formulaire_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:00.539736 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_List_Formulaire_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:00.558281 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_List_Formulaire_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_List_Modele_Attestion_Formation_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:00.589296 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_List_Modele_Attestion_Formation_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:00.606844 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:00.615652 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:00.626649 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_List_Formulaire_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_Given_Class_List_Default_Documents/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:18.438115 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:18] "POST /myclass/api/Update_Class_Default_Document/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:22.843338 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:22] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:33.206543 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:33] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:40.266847 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:40.274358 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:40.278357 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:40.298359 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:40.319366 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:40.378904 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:40.384908 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:40.391910 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:40.415916 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:40.417923 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:40.431444 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:40.439452 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:40.456975 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:40.467985 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:40.480156 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:40.493149 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:40.507148 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:40] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:42] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:46.496244 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:46.501776 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:46.506876 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:46.509778 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:46] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:46.530791 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:38:46.534796 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:46] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:46.553999 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:46] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:46] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:46.570513 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:46] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:46] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:46.582507 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:46] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:46] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:46] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:48.734196 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:48] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:38:56.615646 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:38:56] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:39:08.726200 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:39:08.732213 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:39:08.739216 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:39:08.746735 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:08] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:08] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:39:08.760756 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:08] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:39:08.774440 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:08] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:39:08.783970 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:08] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:39:08.797118 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:08] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:39:08.805116 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:08] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:39:08.816109 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:39:08.826131 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:39:08.844655 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:08] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:08] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:08] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:09] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:11] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:39:13.471852 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:39:13.482887 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:39:13.492894 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:39:13.507464 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:13] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:13] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:39:13.526442 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:13] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:39:13.538455 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:13] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:39:13.555464 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:13] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:13] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:13] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:39:17.155835 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:39:17.165387 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:19] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:39:24.742647 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:39:24.750646 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:24] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:39:24] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:45:38.451103 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:45:38.454103 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:45:38.460112 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:45:38.472102 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:45:38.485102 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:38] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:38] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:38] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:45:38.502110 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:38] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:45:38.518146 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:45:38.532148 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:38] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:38] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:45:38.545152 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:38] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:45:38.557152 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:45:38.566151 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:45:38.573148 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:38] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:38] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:38] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:39] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:45:39.846909 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:45:39.857533 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:45:39.872171 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:39] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:45:39.886828 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:39] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:45:39.902734 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:39] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:45:39.924370 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:39] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:45:39.937869 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:45:39.941986 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:45:39.952990 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:39] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:39] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:39] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:45:39.985166 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:45:40.002719 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:45:40.020813 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:40] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:40] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:40] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:40] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:41] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:45:42] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:48:20.343852 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:48:20.351852 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:48:20.359366 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:48:20] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:48:20.370391 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:48:20.380921 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:48:20] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:48:20.394922 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:48:20] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:48:20.408934 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:48:20] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:48:20.416923 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:48:20] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:48:20.427922 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:48:20.434923 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:48:20] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:48:20] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:48:20.457922 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:48:20.470929 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:48:20] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:48:20] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:48:20] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:48:21] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:48:22] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:13.369515 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:13.376512 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:13.385520 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:13.393520 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:13.403519 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:13] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:13.408520 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:13] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:13.426255 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:13] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:13] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:13.439822 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:13] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:13] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:13.457827 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:13.471860 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:13] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:13.478858 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:13.505862 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:13] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:13] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:13] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:14] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:15] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:26.426259 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:26.436251 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:26.439250 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:26.444257 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:26] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:26] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:26] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:26.480783 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:26] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:26.504307 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:26.510317 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:26.516295 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:26] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:26.527325 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:26.538297 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:26] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:26] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:26.557298 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:26] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:26] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:26.574298 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:26.585305 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:26] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:26.596861 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:26.604864 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:26] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:26.625910 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:26.630915 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:26] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:26] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:26] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:27] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:28] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:47.704245 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:47.708369 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:47.714771 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:47.718782 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:47] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:47] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:47.728090 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:47.732087 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:47] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:47.738087 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:47] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:47] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:47] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:47] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:50.967314 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:50.972071 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:50] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:52] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:49:53.817704 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:53.821718 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:53.825073 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:53.828085 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:49:53.832087 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:53] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:53] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:53] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:54] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:49:54] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:50:14.230094 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:14] "POST /myclass/api/Get_Session_Nb_Sequence/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:50:23.853260 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:23] "POST /myclass/api/Decale_Session_Sequence_X_days/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:50:24.060563 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:24] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:50:27.032292 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:50:27.039399 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:50:27.043292 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:50:27.049706 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:50:27.052706 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:27] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:50:27.062444 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:50:27.068377 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:27] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:27] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:27] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:27] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:50:33.046080 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:50:33.049079 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:50:33.053598 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:50:33.057487 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:33] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:50:33.062285 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:33] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:33] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:33] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:33] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:50:36.074164 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:36] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:50:38.356966 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:50:38] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:52:10.967912 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:52:10.974926 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:10] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:52:10.989922 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:52:10.998924 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:52:11.008921 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:11] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:11] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:11] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:52:11.052228 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:52:11.061238 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:52:11.070756 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:52:11.080754 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:11] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:52:11.088756 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:52:11.098755 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:11] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:52:11.112756 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:11] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:11] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:11] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:52:11.138754 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:52:11.141757 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:11] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:52:11.152754 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:52:11.169283 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:11] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:52:11.187328 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:11] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:11] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:11] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:11] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:52:12] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:53:42.113984 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:53:42.118982 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:53:42.126209 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:53:42.134218 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:53:42] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:53:42] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:53:42] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:53:42.161864 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:53:42.168877 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:53:42.177870 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:53:42] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:53:42] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:53:42] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:53:42] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:53:44.961805 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:53:44.966804 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:53:44.972806 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:53:44.983339 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:53:44.989860 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:53:44] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:53:45] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:53:45] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:53:45] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:53:45] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:53:50.100412 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:53:50] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:53:52.436587 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:53:52] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:07.910414 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:07.919252 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:07.926505 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:07.934413 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:07.940515 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:07] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:07] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:07] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:08] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:08] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:36.413073 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:36.419598 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:36.425601 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:36.432776 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:36] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:36.457864 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:36] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:36] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:36] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:36.551584 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:36.558101 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:36.562099 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:36] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:36.580113 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:36] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:36.590629 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:36] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:36.606160 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:36] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:36.618163 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:36] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:36.631158 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:36.644175 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:36] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:36] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:36.666297 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:36.697274 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:36] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:36.714273 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:36] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:36] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:37] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:38] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:40.023860 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:40.028436 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:40.031678 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:40.036319 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:40.042401 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:40] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:40] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:40.050800 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:40] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:40.057936 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:40] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:40] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:40] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:40] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:57.327580 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:57.333714 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:57.336154 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:57.338162 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:54:57.344165 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:57] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:57] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:57] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:57] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:57] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:54:59.456353 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:54:59] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:55:01.804124 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:55:01] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:07.991844 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:07.994843 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:07.999845 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:08.006852 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:08] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:08.027892 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:08] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:08] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:08] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:08] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:15.699119 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:15] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:18.290235 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:18] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:21.932325 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:21] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:49.042684 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:49.045527 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:49.049348 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:49.054359 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:49.058821 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:49.063938 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:49.071349 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:49.090953 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:49.097461 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:49.104839 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:49.109836 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:49.124837 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:49.136809 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:49.141807 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:49.152806 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:49.162805 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:49.193689 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:49] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:50] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:54.535306 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:54.539836 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:54.542905 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:54.546531 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:54] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:54] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:54.555530 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:54] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:54.559532 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:54.563531 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:54] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:54] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:54] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:54] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:56.865880 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:56.868890 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:56.874125 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:56.878205 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:56:56.883196 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:56] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:56] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:56] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:57] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:57] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:56:59.542177 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:56:59] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:57:02.146746 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:57:02] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:58:33.064341 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:58:33.072338 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:58:33.078851 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:58:33] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:58:33.093860 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:58:33.103857 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:58:33] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:58:33] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:58:33] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:58:33] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:58:51.854856 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:58:51] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:58:58.315169 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:58:58.318400 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:58:58] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:58:58] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:59:16.704182 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:59:16.711182 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:59:16.722187 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:59:16] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:59:16.733191 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:59:16.743194 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:59:16] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:59:16] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:59:16] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:59:17] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:59:47.272638 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:59:47.279645 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:59:47.287645 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 12:59:47.295869 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:59:47] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 12:59:47.306879 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:59:47] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:59:47] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:59:47] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 12:59:47] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:00:06.706825 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:00:06.716845 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:00:06.723920 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:00:06.728917 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:00:06.735918 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:06] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:00:06.742918 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:06] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:06] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:00:06.749917 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:06] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:06] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:06] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:06] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:00:10.422178 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:00:10.426564 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:00:10.432565 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:10] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:00:10.446319 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:00:10.460587 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:10] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:10] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:10] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:10] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:00:15.512124 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:15] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:00:17.512292 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:00:17.516282 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:17] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:17] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:00:20.054646 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:00:20.058167 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:20] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:00:20] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:02:07.601808 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:07.608336 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:07.615330 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:07] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:02:07.627330 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:07.643364 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:07] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:07] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:07] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:02:07.686515 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:07.693019 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:07.702620 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:07] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:07] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:02:07.720148 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:07.723147 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:07.732669 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:07] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:02:07.748666 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:07] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:07] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:02:07.768675 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:07.775665 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:07] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:07] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:02:07.803680 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:07.812223 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:07.833200 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:07] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:07] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:07] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:08] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:09] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:02:18.171085 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:18.177107 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:18.180104 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:18.191718 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:18.194618 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:18.202618 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:18] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:02:18.211725 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:18] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:18] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:18] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:18] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:18] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:18] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:02:22.055668 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:22.059015 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:22.062243 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:22.065616 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:22.069616 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:22] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:22] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:22] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:22] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:22] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:02:24.623681 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:24] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:02:27.918237 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:27.921237 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:27] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:27] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:02:32.142348 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:02:32.148977 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:32] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:02:32] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:18.529806 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:18.536805 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:18] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:18.552807 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:18.559808 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:18.571811 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:18] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:18] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:18] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:18.616325 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:18.623328 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:18.632328 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:18] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:18.639324 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:18.647322 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:18.652727 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:18] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:18.673435 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:18] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:18] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:18.693445 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:18.698442 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:18] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:18] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:18.719444 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:18.733444 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:18] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:18.745446 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:18] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:18] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:18] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:19] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:20] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:32.506347 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:32.513347 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:32] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:32.531871 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:32] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:32] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:32.567873 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:32.569874 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:32.576891 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:32.588427 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:32.598423 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:32] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:32.604419 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:32] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:32] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:32.627423 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:32] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:32.636457 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:32.654426 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:32] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:32] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:32] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:33] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:34] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:38.143938 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:38.154512 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:38.156213 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:38.160689 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:38] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:38.167697 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:38] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:38.174100 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:38] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:38.184525 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:38] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:38] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:38] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:38] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:42.178416 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:42.181427 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:42.184091 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:42.188616 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:42.190620 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:42] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:42] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:42] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:42] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:42] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:44.898147 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:44] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:46.875581 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:46.879711 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:46] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:46] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:03:48.615047 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:03:48.620111 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:48] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:03:48] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:04:45.036710 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:45.046708 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:45] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:04:45.059706 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:45.070706 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:45.085708 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:45] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:45] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:45] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:04:45.128232 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:45.133735 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:45.143748 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:45] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:45] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:04:45.160746 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:45.163748 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:45] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:04:45.179749 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:45.190749 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:45] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:45] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:04:45.207755 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:45] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:45] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:04:45.224762 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:45.235285 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:45.242283 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:45.251818 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:45] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:45] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:45] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:46] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:47] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:04:50.997961 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:51.003891 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:51.005441 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:51.019645 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:51.022635 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:51] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:51] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:04:51.038650 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:51.050185 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:51] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:51] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:51] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:51] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:51] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:04:53.735371 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:53.737736 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:53.740863 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:53.745865 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:53.747862 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:53] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:53] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:53] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:53] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:53] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:04:55.868020 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:55] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:04:58.827532 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:04:58.832529 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:58] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:04:58] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:01.162458 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:01.168458 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:01] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:01] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:04.210532 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:04.213051 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:04] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:04] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:06.321582 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:06.328008 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:06] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:06] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:35.226713 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:35.229151 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:35.231601 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:35.236109 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:35.237111 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:35.240280 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:35.242291 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:35] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:35.252043 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:35] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:35] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:35] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:35.261146 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:35] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:35.268452 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:35] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:35] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:35.277431 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:35.282935 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:35] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:35] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:35] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:35] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:36] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:38.017536 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:38.022612 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:38.023013 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:38.028077 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:38.032078 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:38] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:38.039822 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:38] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:38] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:38.044832 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:38] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:38] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:38] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:38] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:39.883753 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:39.889640 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:39] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:41] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:47.502814 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:47.516937 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:47] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:47] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:49.532052 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:49.542080 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:49] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:49] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:51.509468 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:51.517144 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:51] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:51] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:05:53.127891 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:05:53.131902 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:53] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:05:53] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:06:28.922509 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:06:28.932523 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:06:28.942631 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:06:28] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:06:28.960048 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:06:28.969051 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:06:28] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:06:28] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:06:29] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:06:29] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:07:07.509952 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:07:07.516953 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:07:07.524951 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:07:07.535955 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:07:07] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:07:07.554963 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:07:07] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:07:07] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:07:07] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:07:07] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:07:45.387881 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:07:45.394986 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:07:45.401981 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:07:45.412994 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:07:45.420903 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:07:45] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:07:45] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:07:45] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:07:45] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:07:45] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:15.853447 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:15] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:26.219273 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:26.225274 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:26.231501 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:26.241509 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:26] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:26.253032 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:26.257038 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:26] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:26] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:26] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:26.283589 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:26.293590 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:26] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:26] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:26] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:26.310601 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:26.318599 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:26.334150 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:26.337111 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:26] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:26] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:26] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:27] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:29] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:29.565639 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:29.580650 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:29] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:29.601199 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:29.616305 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:29.628207 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:29] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:29] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:29.642318 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:29.656223 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:29] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:29] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:29] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:29] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:30.513447 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:30.519457 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:30.525451 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:30.533448 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:30.546448 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:30.555540 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:30] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:30.577463 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:30] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:30.580457 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:30] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:30.594006 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:30.598998 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:30.616999 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:30] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:30] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:30] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:30] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:30.656007 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:30] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:32] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:32.251868 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:32.261402 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:32.266993 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:32.282629 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:32.295715 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:32] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:32] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:32] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:32] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:32] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:33] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:34.856403 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:34] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:36.717259 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:36.724386 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:36] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:36] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:08:40.173159 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:08:40.178156 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:40] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:08:40] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:09:09.288818 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:09:09.295924 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:09:09.304818 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:09:09.313862 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:09:09.317917 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:09:09] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:09:09] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:09:09] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:09:09] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:09:09] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:09:17.890891 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:09:17] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:09:20.032492 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:09:20.038489 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:09:20] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:09:20] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:09:21.898577 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:09:21.904581 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:09:21] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:09:21] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:09:24.025263 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:09:24.031271 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:09:24] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:09:24] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:09:25.856375 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:09:25.862380 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:09:25] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:09:25] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:10:02.775534 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:10:02.781430 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:10:02] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:10:02] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:10:04.314224 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:10:04.316235 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:10:04] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:10:04] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:11:29.396317 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:11:29.403311 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:11:29.412312 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:11:29.421310 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:11:29.429311 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:11:29.446308 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:29] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:29] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:11:29.463312 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:29] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:11:29.479315 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:29] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:11:29.486351 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:11:29.497865 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:11:29.509879 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:29] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:29] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:11:29.536866 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:29] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:29] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:30] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:11:30.499384 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:11:30.503391 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:11:30.517392 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:11:30.531393 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:11:30.538393 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:30] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:11:30.559394 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:30] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:11:30.575400 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:30] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:11:30.584420 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:11:30.603981 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:30] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:11:30.619012 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:30] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:11:30.643636 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:30] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:11:30.649638 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:30] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:30] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:31] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:32] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:11:33] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:12:19.204114 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:12:19.208791 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:12:19.211890 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:12:19.217642 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:12:19.220832 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:12:19.222834 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:19] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:19] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:19] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:12:19.235093 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:19] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:19] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:19] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:19] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:12:21.438970 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:12:21.443490 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:12:21.447490 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:12:21.451488 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:21] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:12:21.457945 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:21] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:21] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:21] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:21] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:12:27.134076 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:27] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:12:28.875336 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:12:28.880869 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:28] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:28] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:12:34.427089 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:12:34.430682 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:34] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:12:34] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:38.302530 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:38.309536 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:38.319000 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:38.327102 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:38] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:38] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:38.346000 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:38] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:38] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:38.361005 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:38] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:38.371002 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:38.378000 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:38.387110 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:38] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:38.400226 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:38] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:38.407222 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:38.420296 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:38] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:38] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:38] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:39] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:40.251112 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:40.263112 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:40.280113 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:40.294120 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:40.297120 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:40] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:40.314146 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:40.321146 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:40.336147 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:40] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:40] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:40] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:40.359147 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:40.368150 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:40.378149 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:40] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:40] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:40.417671 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:40] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:40] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:40] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:41] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:43] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:54.121674 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:54.126687 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:54.130682 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:54.135203 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:54.136843 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:54] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:54] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:54.145493 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:54.148499 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:54] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:54] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:54] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:54] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:54] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:56.148868 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:56.152877 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:56.157070 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:56.158073 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:13:56.162589 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:56] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:56] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:56] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:56] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:56] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:13:59.439832 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:13:59] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:01.617415 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:01.620418 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:01] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:01] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:04.411031 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:04.414341 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:04] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:04] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:33.334558 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:33] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:35.509974 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:35.515018 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:35] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:35] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.060505 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:39.063515 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:39.067687 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.074686 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.084775 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.148486 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:39.151591 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:39.155600 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:39.161601 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.166337 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:39.168493 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.172954 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:39.177953 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:39.179951 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.188438 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.192436 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.200882 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.384970 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:39.389452 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:39.393451 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.400715 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.406715 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:39.414891 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.423026 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.428036 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:39.433037 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.444401 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:39.448374 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:39.465443 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:39] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:40] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:40] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:41] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:47.336945 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:47.343939 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:47] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:47.359061 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:47.364058 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:47.377062 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:47] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:47] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:47] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:47.436360 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:47.441360 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:47.447880 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:47.455877 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:47] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:47] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:47.474877 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:47] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:47.483910 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:47.493898 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:47] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:47.504879 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:47.512877 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:47] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:47] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:47.530947 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:47] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:47.545959 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:47.566173 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:47] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:47] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:47] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:48] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:49] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:51.381713 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:51.384715 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:51.388838 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:51.394109 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:51.397121 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:51] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:51.408128 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:51.412152 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:51] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:51] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:51] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:51] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:51] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:51] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:54.009113 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:54.012112 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:54.015309 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:54.019310 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:54.024318 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:54] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:54] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:54] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:54] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:54] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:55.804775 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:55] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:14:57.550067 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:14:57.553066 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:57] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:14:57] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:00.573016 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:00.580014 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:00] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:00] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:20.793780 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:20] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:22.796537 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:22.803532 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:22] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:22] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:24.457425 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:24.461418 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:24] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:24] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:26.960523 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:26.964256 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:26] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:27] "POST /myclass/api/Get_List_Survey_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:29.288821 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:29.299936 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:29.318823 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:29.327879 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:29] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:29.345636 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:29] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:29] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:29] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:30] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:31.352745 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:31] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:33.114564 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:33.121682 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:33] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:33] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:34.181387 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:34] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:34.206121 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:34.221128 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:34] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:34.251128 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:34] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:34.270251 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:34] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:34.287989 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:34.311904 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:34] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:34] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:34.337913 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:34.348805 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:34] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:34.370617 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:34.387057 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:34.407155 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:34] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:34] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:34] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:36] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:37] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:39.811217 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:39.820197 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:39.836162 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:39.855208 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:39] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:39.875800 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:39] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:39] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:39] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:39.899272 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:39.913347 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:39] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:39] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:39] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:42.263062 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:42.270159 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:42.281164 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:42.299176 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:42.310824 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:42.740393 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:42.746398 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:42.752403 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:42.759409 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:42.774409 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:42.776419 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:42.806173 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:42.814317 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:42.834313 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:42.841310 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:42.855315 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:42.867432 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:42] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:43.593708 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:43] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:43] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:45.158778 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:45.165898 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:45] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:45] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:45] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:15:47.112984 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:15:47.118980 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:47] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:15:47] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:05.089471 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:05] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:07.042023 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:16:07.049038 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:07] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:07] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:30.363245 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:16:30.371244 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:30.389284 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:16:30.392241 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:30.407258 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:30] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:30.420249 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:16:30.434258 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:30] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:30] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:30.451304 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:30] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:30] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:30.470302 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:16:30.474308 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:16:30.487312 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:16:30.505835 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:30] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:30] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:30] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:31] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:31.600593 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:16:31.607597 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:16:31.614593 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:16:31.618594 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:31] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:31.634605 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:31] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:31.650131 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:31] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:31] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:31] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:31.675133 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:16:31.687130 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:16:31.695141 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:31] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:31.705139 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:31] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:31.724685 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:31] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:16:31.756737 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:31] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:31] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:32] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:33] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:16:34] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:04.846027 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:04.854029 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:04] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:04.867028 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:04.870027 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:04.879028 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:04] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:04] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:05] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:05] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:14.775812 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:14.784034 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:14.802566 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:14] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:14.832259 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:14] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:14.839465 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:14] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:14] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:14.871947 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:14.883950 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:14] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:14] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:14.904965 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:14.921507 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:14] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:14] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:14.944517 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:14.960514 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:14] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:14.980529 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:14] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:15.002523 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:15] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:15.021573 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:15.025555 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:15.038555 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:15] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:15.058558 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:15] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:15] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:16] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:17] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:49.169101 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:49.173113 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:49.175118 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:49.179547 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:49.183567 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:49.187575 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:49] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:49] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:49] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:49.200061 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:49] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:49] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:49] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:49] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:52.490677 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:52.496977 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:52.501037 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:52.507037 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:52.510036 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:52] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:52] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:52] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:52] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:52] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:55.303407 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:55] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:56.952619 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:56.957699 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:56] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:56] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:17:58.719857 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:17:58.723298 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:58] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:17:58] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:18:00.172313 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n\n\n\n\n\n\n\n\n
  
\n
 
\n

\n
Entre les soussignés
1)  France Active Seine et Marne Essonnes FA SME, 29 allée Jean Rostand, 91000 Évry-Courcouronnes, représenté par son président Christian Mesnier,
2)   NOM  : aaa
               PRENOM :  bbb
               ADRESSE :      
\n
Est conclue la convention suivante, en application de l’article\n

Article 1 : Objet  de la convention 
FA SME organisera l’action de formation suivante : « Bloc 4 Élaborer son action commercial RCNP 35215BC04 » - CONDUIRE UN PROJET 
-    Formation : CONDUIRE UN PROJET  
-    Objectif : Acquérir les connaissances et compétences de base, nécessaires au métier « d’entrepreneur» lié à la création, à la gestion et au développement de petites entreprises. 
-    Programme et méthode : joints en annexe.
-    Type d’action de formation (article D.6313-1 du code du travail modifié par la loi 2018 -771 du 5 Actions de formation
-    Date : du 10/11/2025 au 18/11/2025 
-    Durée : 15.0   heure (s)
-    Lieu :  adr site1  , cp site 1 - vile sit1 

\n

Article 2 : Effectif formé
France Active Seine et marne Essonne accueillera 15 personne(s)

\n

Article 3 : Dispositions financières
En contrepartie de cette action de formation, bbb  aaas’acquittera des coûts suivants : 
•    Frais de formation : 1500.0  € TTC

\n

Article 4 : Modalités de règlement
Le coût de la formation peut être réglé :
•    Par mobilisation du Compte Personnel de Formation (CPF) : via la plateforme MonCompteFormation (MCF) Le règlement est effectué directement par la Caisse des Dépôts et Consignations, conformément aux Conditions Générales d’Utilisation de MCF. La validation définitive de l’inscription est conditionnée par l’accord de financement sur la plateforme et par l’acceptation des conditions de service par le bénéficiaire.
•    Par financement personnel : Dans ce cas, le règlement est à effectuer par chèque, espèce ou virement (si paiement en une seule fois), à réception de la facture émise par FASME. Le paiement devra être intégralement effectué avant l’entrée en formation, sauf accord particulier formalisé entre les parties. La validation définitive de l’inscription est subordonnée à la réception du paiement ou à la signature d’un échéancier de paiement.

\n

Article 5 : Dédit ou abandon
Toute annulation d’inscription intervenant moins de 7 (sept) jours ouvrés avant la date de début de la formation, et en dehors du délai de rétractation, donne lieu à des frais d’annulation égaux à 100 % (cent pour cent) du prix de la formation indiquée sur la Commande.

\n

Article 6 : Différents éventuels
En cas de contestation, l’organisme ou les stagiaires peuvent contacter le service réclamation à l’adresse mail : formation@franceactive-seineetmarneessonne.org. Un traitement de la réclamation sera effectué dans un délai de 7 jours ouvrés. Si une contestation ou un différend ne peuvent être réglés à l’amiable, le Tribunal de Paris sera seul compétent pour régler le litige.

\n

Fait en double exemplaire, à Évry, le , 06/11/2025 

\n

Pour France Active Seine et Marne Essonne
Emmanuelle Billard, Directrice Générale

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_75965.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': 183.0, 'height': 53.0, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': 116.0, 'height': 54.0, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +WARNING:xhtml2pdf.util:getSize: Not a float '90%' +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n\n\n\n\n\n\n\n\n
  
\n
 
\n

\n
Entre les soussignés
1)  France Active Seine et Marne Essonnes FA SME, 29 allée Jean Rostand, 91000 Évry-Courcouronnes, représenté par son président Christian Mesnier,
2)   NOM  : ccc
               PRENOM :  sss
               ADRESSE :      
\n
Est conclue la convention suivante, en application de l’article\n

Article 1 : Objet  de la convention 
FA SME organisera l’action de formation suivante : « Bloc 4 Élaborer son action commercial RCNP 35215BC04 » - CONDUIRE UN PROJET 
-    Formation : CONDUIRE UN PROJET  
-    Objectif : Acquérir les connaissances et compétences de base, nécessaires au métier « d’entrepreneur» lié à la création, à la gestion et au développement de petites entreprises. 
-    Programme et méthode : joints en annexe.
-    Type d’action de formation (article D.6313-1 du code du travail modifié par la loi 2018 -771 du 5 Actions de formation
-    Date : du 10/11/2025 au 18/11/2025 
-    Durée : 15.0   heure (s)
-    Lieu :  adr site1  , cp site 1 - vile sit1 

\n

Article 2 : Effectif formé
France Active Seine et marne Essonne accueillera 15 personne(s)

\n

Article 3 : Dispositions financières
En contrepartie de cette action de formation, sss  cccs’acquittera des coûts suivants : 
•    Frais de formation : 1500.0  € TTC

\n

Article 4 : Modalités de règlement
Le coût de la formation peut être réglé :
•    Par mobilisation du Compte Personnel de Formation (CPF) : via la plateforme MonCompteFormation (MCF) Le règlement est effectué directement par la Caisse des Dépôts et Consignations, conformément aux Conditions Générales d’Utilisation de MCF. La validation définitive de l’inscription est conditionnée par l’accord de financement sur la plateforme et par l’acceptation des conditions de service par le bénéficiaire.
•    Par financement personnel : Dans ce cas, le règlement est à effectuer par chèque, espèce ou virement (si paiement en une seule fois), à réception de la facture émise par FASME. Le paiement devra être intégralement effectué avant l’entrée en formation, sauf accord particulier formalisé entre les parties. La validation définitive de l’inscription est subordonnée à la réception du paiement ou à la signature d’un échéancier de paiement.

\n

Article 5 : Dédit ou abandon
Toute annulation d’inscription intervenant moins de 7 (sept) jours ouvrés avant la date de début de la formation, et en dehors du délai de rétractation, donne lieu à des frais d’annulation égaux à 100 % (cent pour cent) du prix de la formation indiquée sur la Commande.

\n

Article 6 : Différents éventuels
En cas de contestation, l’organisme ou les stagiaires peuvent contacter le service réclamation à l’adresse mail : formation@franceactive-seineetmarneessonne.org. Un traitement de la réclamation sera effectué dans un délai de 7 jours ouvrés. Si une contestation ou un différend ne peuvent être réglés à l’amiable, le Tribunal de Paris sera seul compétent pour régler le litige.

\n

Fait en double exemplaire, à Évry, le , 06/11/2025 

\n

Pour France Active Seine et Marne Essonne
Emmanuelle Billard, Directrice Générale

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_24922.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': 183.0, 'height': 53.0, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': 116.0, 'height': 54.0, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:18:01] "GET /myclass/api/Prepare_and_Send_Convention_From_Session_By_PDF/PW5CxmVrXwZklUBdG1N5wMt5bNONwYtzJQ/68fb8e6a0438bff16569753c/65f05a36c544f77525a30631 HTTP/1.1" 200 - +INFO:root:2025-11-06 13:18:01.154485 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:18:01] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:19:32.612129 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:19:32.626158 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:19:32.645157 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:19:32] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:19:32.670171 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:19:32] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:19:32.695732 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:19:32] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:19:32] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:19:32.719263 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:19:32] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:19:32.733264 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:19:32] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:19:32] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:19:34.749462 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:19:34.754574 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:19:34] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:19:36] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:19:49.504733 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:19:49] "POST /myclass/api/Get_Session_Nb_Sequence/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:19:56.137020 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:19:56] "POST /myclass/api/Decale_Session_Sequence_X_days/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:19:56.361776 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:19:57] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:20:24.427447 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:20:24.434005 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:20:24.437165 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:20:24.441806 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:20:24.447447 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:24] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:20:24.454798 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:24] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:24] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:20:24.462036 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:24] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:24] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:24] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:24] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:20:27.150028 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:20:27.154051 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:28] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:20:30.383109 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:20:30.386112 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:20:30.390112 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:20:30.391110 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:20:30.396536 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:30] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:30] "POST /myclass/api/Get_Given_SessionFormation_List_Automatic_Traitement_From/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:30] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:30] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:30] "POST /myclass/api/Audit_Session_Action_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:20:32.580452 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:32] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:20:35.031237 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:20:35.035401 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:35] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:35] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:20:37.184078 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:20:37.185081 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:37] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:37] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:20:38.470703 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 06/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_73754.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:38] "GET /myclass/api/Prepare_and_Send_Convention_From_Session_By_PDF/PW5CxmVrXwZklUBdG1N5wMt5bNONwYtzJQ/68e419c2e5fea6f5328c2007/65f05a36c544f77525a3062e HTTP/1.1" 200 - +INFO:root:2025-11-06 13:20:38.787729 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:39] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:20:51.379955 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:51] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:20:53.038453 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:20:53.040697 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:53] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:20:53] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:20:57.038848 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 06/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_40895.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:06] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:21:06.142696 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:06] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:21:40.475549 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:21:40.478546 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:21:40.486545 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:21:40.495563 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:21:40.499651 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:21:40.511643 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:21:40.519565 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:21:40.537681 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:40] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:21:40.551295 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:40] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:40] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:21:40.566309 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:21:40.572306 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:40] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:21:40.589304 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:40] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:40] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:40] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:40] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:40] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:43] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:21:43.236883 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:21:43.249920 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:21:43.263541 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:21:43.282687 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:43] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:43] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:43] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:21:43.317856 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:43] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:21:43.333886 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:43] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:21:43.349431 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:21:43.371025 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:43] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:43] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:21:43.390013 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:43] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:43] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:21:45.952979 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:21:46] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:22:25.388988 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:22:25.393371 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:22:25.396745 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:22:25.401195 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:22:25.404750 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:22:25.405259 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:22:25.413418 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:22:25.416420 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:25] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:25] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:22:25.423926 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:25] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:25] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:25] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:25] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:25] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:25] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:25] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:22:27.896565 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:27] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:22:29.613405 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:29] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:22:33.428887 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:33] "POST /myclass/api/Add_Update_UE_To_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:22:33.614475 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:33] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:22:38.903545 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:22:38.907169 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:22:38.910269 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:22:38.915861 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:22:38.921861 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:22:38.922858 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:38] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:38] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:38] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:38] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:38] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:39] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:22:48.704957 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:49] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-06 13:22:49.418554 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:22:49.422852 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:22:49.425854 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:49] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:49] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:22:49] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-06 13:26:00.660607 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-06 13:26:00.660607 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-06 13:26:00.660607 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-06 13:26:00.660607 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-06 13:26:00.661760 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-06 13:26:48.204409 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:26:48.204920 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:26:48.211758 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:26:48.215764 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:26:48.220758 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:26:48.224766 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:26:48] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:26:48] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:26:48] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:26:48] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:26:48] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:26:48] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-06 13:27:29.395654 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-06 13:27:29.395654 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-06 13:27:29.395654 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-06 13:27:29.395654 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-06 13:27:29.395654 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-06 13:27:55.834609 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:27:55.838609 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:27:55.842032 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:27:55.845954 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:27:55.849000 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:27:55] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:27:55] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:27:55] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:27:55] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:27:55] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:28:03.245599 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:28:03.249353 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:28:03.253692 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:28:03.256721 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:28:03.257716 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:28:03.268190 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:28:03] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:28:03] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:28:03] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:28:03] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:28:03] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:28:03] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-06 13:28:08.685744 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:28:09] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-06 13:28:09.218336 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:28:09.221344 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-06 13:28:09.226344 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:28:09] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:28:09] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [06/Nov/2025 13:28:09] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 09:24:03.950909 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 09:24:03.950909 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 09:24:03.951921 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 09:24:03.951921 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 09:24:03.951921 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 09:24:31.824260 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 09:24:31.825260 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 09:24:31.825260 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 09:24:31.825260 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 09:24:31.825260 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-07 09:25:15.492478 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:25:15] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:25:16.163191 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:25:16.164192 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:25:16.167710 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:25:16.170709 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:25:16] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:25:16.177713 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:25:16] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:25:16] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:25:16.195234 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:25:16] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:25:16.217235 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:25:16.219257 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:25:16.223244 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:25:16.228245 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:25:16.235245 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:25:16] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:25:16] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:25:16] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:25:16.256797 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:25:16] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:25:16] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:25:16] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:25:16] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:36.193939 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:36.196938 : La session de connexion n'est pas valide +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:36] "POST /myclass/api/Get_Ent_Student_List_Session_Promotion/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:44.708483 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:44.710483 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:44.713521 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:44.717484 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:44] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:44.727484 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:44] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:44] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:44] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:44.752517 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:44.755500 : La session de connexion n'est pas valide +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:44] "POST /myclass/api/Get_Ent_Student_List_Session_Promotion/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:47.304662 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:47.306659 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:47.309668 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:47] "POST /myclass/api/get_all_class_Given_partner_owner_recid_No_Login/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:49.682960 : Get_Partner_Data_From_Subdomain Sous Domaine invalide 11 +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:49] "POST /myclass/api/Get_Partner_Data_From_Subdomain/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:56.332522 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:56] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:56.364559 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:56.369561 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:56.373561 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:56] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:56.387115 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:56.389081 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:56.398601 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:56] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:56.406597 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:56] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:56] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:56.414596 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:56.420601 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:56.422595 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:56] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:56.432597 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:56.439613 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:56] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:56] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:56] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:56] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:56] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:59.449950 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:59] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:59.485463 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:59.486466 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:59.491464 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:59.493465 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:59.495465 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:59] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:59.507980 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:59] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:59.513979 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:root:2025-11-07 09:26:59.514979 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:59] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:59.522304 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:59] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:59] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:59.531813 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:59] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:26:59.537812 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:26:59.540812 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:59] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:59] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:59] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:59] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:26:59] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.379157 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:06.380481 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:06.383471 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:06.385602 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:06.386599 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/get_List_domaine_formation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/Get_Suggested_Fr_Cities/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/Get_Suggested_Word/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/get_all_class/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.508951 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:06.511055 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.513459 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.521519 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.525519 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.528502 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.536079 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.542078 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.553138 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.560277 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.568271 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:06.569155 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.584153 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:06.587229 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.594145 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.597144 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.603179 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:06.604176 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:06.606184 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.610178 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:06.611179 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.615744 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.618743 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.621744 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.624775 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:06.627749 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:06.628774 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.630750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.634750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:06.635749 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:06] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:09.904135 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:09] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:09.961956 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:09.970947 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:09.977938 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:09] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:09.987931 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:09.996984 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:09] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:10.002982 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:10] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:10.015519 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:10] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:10.030084 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:10.040127 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:10] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:10] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:10.054650 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:10] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:10.073666 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:10] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:10] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:10.086667 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:10] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:10] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:27:11.962785 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:27:11.967676 : La session de connexion n'est pas valide +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:27:11] "POST /myclass/api/Get_Ent_Student_List_Session_Promotion/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:33:51.411013 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:33:51.414013 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:33:51.416013 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:33:51.419012 : Get_Partner_Data_From_Subdomain Sous Domaine invalide 11 +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:33:51] "POST /myclass/api/Get_Partner_Data_From_Subdomain/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:33:51] "POST /myclass/api/get_all_class_Given_partner_owner_recid_No_Login/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:37:55.694847 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:37:55.699852 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:37:55] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:37:55.707847 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:37:55.711851 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:37:55] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:37:55.722851 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:37:55] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:37:55] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:37:55.751361 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:37:55.755360 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:37:55.758363 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:37:55.761362 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:37:55] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:37:55] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:37:55.770360 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:37:55.771360 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:37:55] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:37:55] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:37:55] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:37:55] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.251145 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:20.254149 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:20.256149 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:20.260146 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:20.262159 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/get_List_domaine_formation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/Get_Suggested_Fr_Cities/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/Get_Suggested_Word/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/get_all_class/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.592483 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:20.595482 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.599825 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:20.602825 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.607849 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.616850 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.622850 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:20.625849 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.630851 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.637871 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:20.640866 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.652872 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.661849 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.673865 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.678851 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.683863 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:20.687860 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.691859 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.715792 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.733792 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:20.735791 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.743792 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.748793 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.759793 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:20.763800 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.770793 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.775795 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.783824 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:20.792799 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:20.796803 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:20] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:22.913690 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:22] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:22.943674 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:22.944675 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:22.947676 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:22.952683 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:22] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:22.960674 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:22.978690 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:22] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:22] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:22.981689 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:22.983705 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:22.992745 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:22] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:22.999757 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:23] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:23] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:23.009252 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:23] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:23.014256 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:23] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:23] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:23] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:23] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:26.354949 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:26.358951 : La session de connexion n'est pas valide +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:26] "POST /myclass/api/Get_Ent_Student_List_Session_Promotion/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:38:33.648513 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:33.652480 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:33.655482 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:38:33.658477 : Get_Partner_Data_From_Subdomain Sous Domaine invalide 11 +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:33] "POST /myclass/api/Get_Partner_Data_From_Subdomain/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:38:33] "POST /myclass/api/get_all_class_Given_partner_owner_recid_No_Login/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:39:11.379156 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:39:11.383157 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:39:11.385158 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:39:11.386157 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:11] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:11] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:39:11.402289 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:11] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:11] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:39:11.417987 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:39:11.420988 : La session de connexion n'est pas valide +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:11] "POST /myclass/api/Get_Ent_Student_List_Session_Promotion/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:39:16.783512 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:39:16.786511 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:39:16.788515 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:39:16.790525 : Get_Partner_Data_From_Subdomain Sous Domaine invalide 11 +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:16] "POST /myclass/api/Get_Partner_Data_From_Subdomain/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:16] "POST /myclass/api/get_all_class_Given_partner_owner_recid_No_Login/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:39:23.124039 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:39:23.129038 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:23] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:39:23.143035 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:39:23.149038 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:39:23.152048 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:23] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:23] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:23] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:39:23.162045 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:39:23.166044 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:39:23.170557 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:39:23.175555 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:39:23.178555 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:23] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:23] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:39:23.189070 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:23] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:23] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:23] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:39:23] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:40:03.270685 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:40:03.274685 : La session de connexion n'est pas valide +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:40:03] "POST /myclass/api/Get_Ent_Student_List_Session_Promotion/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:41:01.894689 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:41:01.897701 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:41:01] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:41:01.905692 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:41:01.907691 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:41:01.915695 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:41:01] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:41:01] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:41:01] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:41:01.932690 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:41:01.935690 : La session de connexion n'est pas valide +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:41:01] "POST /myclass/api/Get_Ent_Student_List_Session_Promotion/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:43:17.348112 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:43:17.351113 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:43:17.354112 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:43:17] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:43:17.361112 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:43:17] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:43:17.369111 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:43:17] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:43:17] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:43:17.392621 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:43:17.395622 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:43:17.397622 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:43:17.400623 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:43:17.403623 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:43:17] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:43:17] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:43:17.411630 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:43:17] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:43:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:43:17] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:43:17] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:43:19.524063 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:43:19] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:43:22.861373 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:43:23] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/690626cfd3d7adc37cb3fc94 HTTP/1.1" 200 - +INFO:root:2025-11-07 09:46:12.318035 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:46:12.325544 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:46:12] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:46:12.333545 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:46:12.341545 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:46:12.346544 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:46:12] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:46:12] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:46:12] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:46:12.358544 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:46:12] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:46:50.699799 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:46:50.700797 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:46:50.705798 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:46:50] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:46:50.713799 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:46:50.720799 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:46:50] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:46:50] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:46:50] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:46:50.752838 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:46:50] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:46:57.990704 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:46:57.998720 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:46:58.007865 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:46:58] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:46:58.010898 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:46:58] "POST /myclass/api/getRecodedParnterImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:46:58] "POST /myclass/api/Get_List_Theme_Catalog_Pub/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:46:58.963080 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:46:59] "POST /myclass/api/Get_Partner_Catalog_Pub_Config/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:06.487923 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:06.488933 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:06.491948 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:06] "POST /myclass/api/Get_Partner_Data_From_Subdomain/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:06] "POST /myclass/api/get_all_class_Given_partner_owner_recid_No_Login/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:09.473975 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:09.482976 : Ajout Token OK, _id = 68f23fd115d6ff1cb9f4ec72 +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:09] "POST /myclass/api/Ent_Student_login/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.393924 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.394925 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.399926 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.404928 : {'_id': ObjectId('6906220dd3d7adc37cb3fc93'), 'apprenant_id': '66432a8b41efccf7bb038fe4', 'type': 'student', 'email': 'mysy1000formation+02@gmail.com', 'partner_owner_recid': '43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89', 'active': '1', 'adr_city': '', 'adr_country': '', 'adr_street': '', 'civilite': 'neutre', 'code_postal': '', 'creation_by': '65f04934549224c14c3f6039', 'creation_date': '2025-11-01 16:06:53.957236', 'firstconnexion': '0', 'locked': '0', 'mob_phone': '023456789', 'nom': 'ccc', 'notification_send': '0', 'prenom': 'sss', 'pwd': 'Sdj3X7hCbFo', 'lastconnexion': '2025-11-07 09:47:09.482976', 'token': 'lpd3vw_C5_JTNIN87nr7db5lS2vmNMb6Ew'} +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/get_user_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/Get_List_Ent_Alert_Message/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.430444 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/Get_Ent_Student_List_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/Get_Ent_Student_List_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.496813 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.499811 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.503812 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.507811 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.511811 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.514816 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.519817 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.522834 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.528326 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.542334 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.549334 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.553351 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.560339 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.565336 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.572353 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.579336 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.585334 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.587335 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.593341 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.604335 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.608358 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.612338 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.616339 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.625360 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.627339 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.631673 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.637679 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.641672 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.645676 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.656683 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.659682 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.671187 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.672192 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.676198 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:10.677196 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:10.681197 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:10] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.516843 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:14.521847 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.526845 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.531845 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.534846 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:14.537843 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.541878 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.546844 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.554876 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:14.556843 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.561846 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.565874 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.568850 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:14.571870 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:14.574864 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.583347 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.586348 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:14.589346 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.593347 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:14.594347 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.606346 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:14.607373 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:14.610348 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.618381 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.622348 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.625345 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.628346 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:14.630363 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.635346 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:14.637362 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.647368 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.651348 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.661352 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.665350 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 09:47:14.668350 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:47:14.673351 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:47:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:51:56.940331 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:51:57] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:54:32.703078 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:54:32] "POST /myclass/api/Get_Ent_Student_List_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:55:57.447225 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:55:57] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 09:56:05.017184 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 09:56:05] "POST /myclass/api/Get_Ent_Student_List_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:06:12.387184 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:06:12.393689 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:06:12.397696 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:06:12] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:06:12.411208 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:06:12.418209 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:06:12] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:06:12] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:06:12.423210 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:06:12] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:06:12] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:06:42.491492 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:06:42] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:11:54.356708 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:11:54] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:12:00.109011 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:12:00.113065 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:12:00.116586 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:12:00] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:12:00.124104 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:12:00.132616 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:12:00] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:12:00] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:12:00] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:12:00.164175 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:12:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:31:48.170270 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:31:48] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:31:48.216272 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:31:48.248309 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:31:48] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:31:48.267300 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:31:48] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:31:48.294035 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:31:48.342022 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:31:48] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:31:50] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:46:47.561036 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:46:47.566048 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:46:47.571048 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:46:47] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:46:47.585053 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:46:47] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:46:47] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:46:47.600036 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:46:47] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:46:47.795013 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:46:47] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:47:35.783321 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:47:35] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id//690626cfd3d7adc37cb3fc94 HTTP/1.1" 404 - +INFO:root:2025-11-07 10:47:36.834524 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:47:36] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id//690626cfd3d7adc37cb3fc94 HTTP/1.1" 404 - +INFO:root:2025-11-07 10:47:49.201826 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:47:49] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id//690626cfd3d7adc37cb3fc94 HTTP/1.1" 404 - +INFO:root:2025-11-07 10:48:45.145061 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:48:45] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/690626cfd3d7adc37cb3fc94 HTTP/1.1" 304 - +INFO:root:2025-11-07 10:54:38.602488 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:54:38] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/690626cfd3d7adc37cb3fc94 HTTP/1.1" 304 - +INFO:root:2025-11-07 10:54:54.392507 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:54:54.396507 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:54:54.399507 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:54:54] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:54:54.407513 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:54:54] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:54:54.418649 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:54:54] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:54:54.422159 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:54:54] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:54:54] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:55:34.593154 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:55:34.599154 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:55:34.604161 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:55:34] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:55:34.615154 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:55:34.625234 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:55:34] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:55:34] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:55:34] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:55:34.635668 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:55:34] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:55:42.221940 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:55:42.224938 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:55:42] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:55:42.230962 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:55:42.232938 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:55:42.240938 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:55:42] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:55:42] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:55:42] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:55:42.276633 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:55:42] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:56:06.044103 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:56:06.047103 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:56:06] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:56:06.050112 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:56:06.056108 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:56:06.060111 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:56:06] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:56:06] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:56:06] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:56:06.088131 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:56:06] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:59:11.853246 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:59:11.854248 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:59:11.860245 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 10:59:11.866246 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:59:11] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:59:11] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:59:11] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:59:11.892246 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:59:11] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:59:11.902249 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:59:11] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-07 10:59:15.006613 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:59:15] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/690626cfd3d7adc37cb3fc94 HTTP/1.1" 304 - +INFO:root:2025-11-07 10:59:19.134768 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 10:59:19] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68fe06e779119ff4d421aeed HTTP/1.1" 200 - +INFO:root:2025-11-07 12:13:43.644177 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:13:43.646177 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:13:43.652176 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:13:43] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:13:43.661176 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:13:43.667505 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:13:43] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:13:43] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:13:43] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:13:43.685017 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:13:43] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:13:46.308085 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:13:46] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/690626cfd3d7adc37cb3fc94 HTTP/1.1" 304 - +INFO:root:2025-11-07 12:13:49.786943 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:13:49] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68fe06e779119ff4d421aeed HTTP/1.1" 304 - +INFO:root:2025-11-07 12:20:56.003641 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:20:56] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/690626cfd3d7adc37cb3fc94 HTTP/1.1" 304 - +INFO:root:2025-11-07 12:21:21.802999 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:21:21] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/690626cfd3d7adc37cb3fc94 HTTP/1.1" 304 - +INFO:root:2025-11-07 12:37:19.600180 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:19.605187 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:19.611186 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:19] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:37:19.618184 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:19] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:37:19.630700 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:19] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:19] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:37:19.640699 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:19] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:37:22.300656 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:22] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/690626cfd3d7adc37cb3fc94 HTTP/1.1" 304 - +INFO:root:2025-11-07 12:37:24.043343 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:24.048343 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:24.051344 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:24.055352 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:24] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:37:24.064351 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:24] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:24] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:37:24.080877 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:24] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:37:24.118406 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:24.122405 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:24.128923 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:24.133933 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:24] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:24] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:37:24.141932 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:24.146934 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:24] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:24] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:24] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:24] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:24] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:37:30.324414 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:30] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68fe06e779119ff4d421aeec HTTP/1.1" 200 - +INFO:root:2025-11-07 12:37:32.011584 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:32.014584 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:32.017102 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:32.022095 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:32] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:37:32.027095 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:32] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:32] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:37:32.040096 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:32] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:32] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:37:32.097610 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:32.100609 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:32.103615 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:32.109615 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:37:32.114614 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:32] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:37:32.123134 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:32] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:32] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:32] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:32] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:37:32] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:38:28.073081 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:38:28] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68fe06e779119ff4d421aeec HTTP/1.1" 304 - +INFO:root:2025-11-07 12:38:32.049863 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:38:32.057862 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:38:32.061864 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:38:32.064863 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:38:32.067867 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:38:32] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:38:32.078866 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:38:32] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:38:32] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:38:32] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:38:32.112893 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:38:32.116893 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:38:32.121904 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:38:32] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:38:32.127903 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 12:38:32.131903 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:38:32] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:38:32] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:38:32] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:38:32.139084 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:38:32] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:38:32] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:38:32] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-07 12:43:43.059966 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:43:43] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68fb7dc779119ff4d421ae9a HTTP/1.1" 200 - +INFO:root:2025-11-07 12:44:58.292208 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:44:58] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68fe06e779119ff4d421aeec HTTP/1.1" 200 - +INFO:root:2025-11-07 12:45:04.484271 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:45:04] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68f4d3e5d12201e20d8b6dad HTTP/1.1" 200 - +INFO:root:2025-11-07 12:45:27.080595 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:45:27] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68fe044d79119ff4d421aeea HTTP/1.1" 200 - +INFO:root:2025-11-07 12:47:11.163602 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:47:11] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68fe06e779119ff4d421aeec HTTP/1.1" 304 - +INFO:root:2025-11-07 12:48:08.226397 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:48:08] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68f617bfd12201e20d8b6daf HTTP/1.1" 200 - +INFO:root:2025-11-07 12:48:13.802759 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:48:13] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68f4d3e5d12201e20d8b6dad HTTP/1.1" 304 - +INFO:root:2025-11-07 12:49:07.876456 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:49:07] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/6847f02297eb82bb3be50aea HTTP/1.1" 200 - +INFO:root:2025-11-07 12:49:10.609556 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:49:10] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/6847f02297eb82bb3be50aea HTTP/1.1" 304 - +INFO:root:2025-11-07 12:54:19.450027 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:54:19] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68f61709d12201e20d8b6dae HTTP/1.1" 200 - +INFO:root:2025-11-07 12:55:04.466271 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:55:04] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68fe04a179119ff4d421aeeb HTTP/1.1" 200 - +INFO:root:2025-11-07 12:55:09.760545 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 12:55:09] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68fb8f5979119ff4d421aea0 HTTP/1.1" 200 - +INFO:root:2025-11-07 14:23:30.971488 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:31.015487 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:31.019504 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:31.021487 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:31.029502 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:31.034488 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:31] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:31] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-11-07 14:23:31.054999 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:31] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:31] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:31] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:31] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:31] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-07 14:23:32.255325 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:32] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-07 14:23:33.695664 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:33.697664 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:33.698665 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:33.703663 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:33.706664 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:33.714664 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-07 14:23:33.735639 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/Get_List_Class_Niveau_Formation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-11-07 14:23:33.757643 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-07 14:23:33.774159 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:33.784157 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-07 14:23:33.789158 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 14:23:33.799159 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:33.802159 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 14:23:33.870692 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:33.875202 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:33.879204 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:33] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 14:23:39.524513 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:39] "POST /myclass/api/Delete_Stored_Downloaded_File/ HTTP/1.1" 200 - +INFO:root:2025-11-07 14:23:39.586511 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-07 14:23:39.588513 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:39] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:39] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 14:23:56.975158 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 14:23:56] "POST /myclass/api/Store_User_Downloaded_File/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 14:25:53.317236 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 14:25:53.317236 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 14:25:53.317236 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 14:25:53.317236 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 14:25:53.317236 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 14:26:11.651985 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 14:26:11.651985 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 14:26:11.651985 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 14:26:11.651985 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 14:26:11.651985 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 14:26:49.858129 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 14:26:49.858129 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 14:26:49.858129 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 14:26:49.858129 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 14:26:49.858129 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 14:35:27.633321 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 14:35:27.633321 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 14:35:27.634322 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 14:35:27.634322 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 14:35:27.634322 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 14:35:34.238789 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 14:35:34.238789 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 14:35:34.238789 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 14:35:34.238789 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 14:35:34.238789 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:01:23.918797 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:01:23.918797 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:01:23.918797 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:01:23.918797 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:01:23.918797 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:07:27.276359 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:07:27.276359 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:07:27.276359 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:07:27.276359 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:07:27.276359 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:08:30.774480 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:08:30.774480 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:08:30.774480 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:08:30.774480 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:08:30.774480 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:08:54.830168 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:08:54.831168 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:08:54.831168 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:08:54.831168 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:08:54.831168 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:09:29.317388 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:09:29.317388 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:09:29.317388 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:09:29.317388 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:09:29.317388 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:10:12.126281 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:10:12.126281 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:10:12.126281 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:10:12.126281 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:10:12.126281 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:10:41.514990 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:10:41.514990 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:10:41.514990 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:10:41.514990 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:10:41.514990 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:10:55.843881 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:10:55.843881 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:10:55.843881 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:10:55.843881 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:10:55.843881 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:12:08.982670 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:12:08.982670 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:12:08.983670 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:12:08.983670 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:12:08.983670 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:12:31.232894 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:12:31.232894 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:12:31.232894 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:12:31.232894 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:12:31.232894 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:13:00.142737 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:13:00.142737 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:13:00.142737 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:13:00.142737 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:13:00.142737 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:14:26.656893 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:14:26.656893 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:14:26.656893 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:14:26.656893 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:14:26.656893 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:15:27.638592 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:15:27.638592 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:15:27.638592 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:15:27.638592 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:15:27.638592 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:17:34.040155 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:17:34.040155 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:17:34.040155 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:17:34.040155 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:17:34.040155 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:19:12.629094 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:19:12.629094 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:19:12.629094 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:19:12.629094 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:19:12.629094 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-07 15:19:19.207283 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-07 15:19:19.207283 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-07 15:19:19.207283 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-07 15:19:19.207283 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-07 15:19:19.207283 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-07 16:42:00.069525 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 16:42:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-07 16:42:03.835220 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 16:42:03] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/68fe06e779119ff4d421aeec HTTP/1.1" 304 - +INFO:root:2025-11-07 16:54:49.747169 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 16:54:49] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/690df2ec995b26cde9611890 HTTP/1.1" 200 - +INFO:root:2025-11-07 16:54:52.464197 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 16:54:52] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/690df2ec995b26cde9611890 HTTP/1.1" 304 - +INFO:root:2025-11-07 16:54:55.809017 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [07/Nov/2025 16:54:55] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/zFkN2PICvlk896szbnhZgOaL8Pfnm3cLKQ/690df2ec995b26cde9611890 HTTP/1.1" 304 - +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 10:58:11.193624 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 10:58:11.193624 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 10:58:11.193624 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 10:58:11.193624 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 10:58:11.193624 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 10:59:17.199435 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 10:59:17.200434 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 10:59:17.201434 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 10:59:17.201434 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 10:59:17.201434 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 11:19:07.753636 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:07] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:09.629084 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:09.635083 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:09.639082 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:09] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:09.648579 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:09.650578 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:09] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:09] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:09.677072 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:09.680071 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:09.681071 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:09] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:09.686072 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:09.689072 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:09.694071 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:09] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:09] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:09] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:09] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:09.711301 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:09] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:09] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:09] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:12.583730 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:12.585731 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:12.587729 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:12] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:12.596736 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:12] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:12.606241 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:12] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:12] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:12.626954 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:12.628953 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:12.631956 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:12.636955 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:12] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:12.640955 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:12.645955 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:12] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:12] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:12] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:12] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:12] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:21.089992 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:21] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:21.131998 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:21] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:21.155540 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:21.979243 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:22.015582 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:22.135251 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:22] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:22] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:22] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:22] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:22.639375 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:22.658403 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:22.663391 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:19:22.673385 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:22] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:22.691419 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:22] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:22.732774 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:22] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:22] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:23] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:30] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:19:43.155325 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:19:43] "POST /myclass/api/get_Class_From_Internal_Url/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:05.699749 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:05] "POST /myclass/api/Add_Update_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:05.818641 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:05] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:09.997089 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:09.999089 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:10.002104 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:10.006618 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:10.011634 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:10.013636 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:10.015635 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:10] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:10] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:10] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:10.029651 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:10] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:10] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:10.035635 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:10] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:10] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:10] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:10] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:13.310878 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:13] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:15.067718 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:15] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:23.446037 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:23] "POST /myclass/api/Add_Update_UE_To_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:23.615384 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:23] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:33.246227 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:33.247227 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:33.251735 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:33.255735 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:33.269737 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:33.298735 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:33.304738 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:33.312736 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:33.321738 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:33.331736 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:33.336744 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:33.340742 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:33.346743 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:33.353255 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:33.358256 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:33.365290 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:33.367257 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:33.374301 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:33.385257 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:33.388256 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:33.398255 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:33.401256 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:33.403256 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:33.411258 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_List_Class_Niveau_Formation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:33.474922 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:33.477921 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:33.481923 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:33] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:35.775035 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:35.778028 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:35] "POST /myclass/api/Get_List_base_calcul_note_class_and_ue_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:35] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:38.604331 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:38] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:41.849811 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:41] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:50.172067 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:50.174069 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:50.177068 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:50.178093 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:50] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:50] "POST /myclass/api/Get_List_Type_Cours/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:50] "POST /myclass/api/Get_Competence_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:50] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:53.034695 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:53] "POST /myclass/api/Get_List_base_calcul_note_class_and_ue_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 11:21:53.065715 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:21:53.068719 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:53] "POST /myclass/api/Get_Given_Unite_Enseignement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:21:53] "POST /myclass/api/Get_List_Unite_Enseignement_Planif_lines/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:22:05.226467 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:22:05] "POST /myclass/api/Update_Unite_Enseignement/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:22:05.333735 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:22:05] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:22:09.393991 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:22:09] "POST /myclass/api/Get_List_base_calcul_note_class_and_ue_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 11:22:09.428987 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:22:09.429988 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:22:09] "POST /myclass/api/Get_Given_Unite_Enseignement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:22:09] "POST /myclass/api/Get_List_Unite_Enseignement_Planif_lines/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:22:32.070183 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:22:32] "POST /myclass/api/Update_Unite_Enseignement/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:22:32.140298 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:22:32] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:26:12.114148 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.117149 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:26:12.124152 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.130149 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.134155 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:26:12.161153 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.163154 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.166712 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.170709 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:26:12.178711 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.182746 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:26:12.198707 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.200710 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.204711 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.210709 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:26:12.220710 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:26:12.229752 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.234709 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.238710 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:26:12.246750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:26:12.253744 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:26:12.261745 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.262747 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:26:12.270865 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_List_Class_Niveau_Formation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:26:12.786300 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.787301 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:26:12.793637 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:12] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:26:59.309273 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:26:59] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:27:10.727045 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:27:14.277224 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:17.535484 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:20.725053 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:24.908926 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:28.625720 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:30.956528 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:32.947055 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:34.467671 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:35.974840 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:37.456588 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:39.466442 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:43.483527 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:45.309489 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:46.923394 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:48.452969 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:50.069556 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 11:27:51.522765 : L'utilisateur destinataire de l'email est invalide +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:27:52] "POST /myclass/api/AddStagiairetoClass_mass_for_many_session/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:27:52.010057 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:27:52.013064 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:27:52.015060 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:27:52.020057 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:27:52] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:27:52] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:27:52] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:27:52] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:27:56.231359 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:27:56.234375 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:27:56.239366 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:27:56.241364 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:27:56] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:27:56.250377 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:27:56] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:27:56] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:27:56] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:27:56] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:28:01.092066 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:28:01] "POST /myclass/api/Get_List_Sequence_Planning_Model_Header/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:28:06.311185 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:28:06] "POST /myclass/api/Get_Given_Sequence_Planning_Model_With_Option/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:28:20.927501 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:28:20] "POST /myclass/api/Apply_Planning_Model_To_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:28:20.970016 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:28:20] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:28:41.710577 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:28:41.712568 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:28:41.716084 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:28:41.719113 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:28:41] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:28:41] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:28:41] "POST /myclass/api/Get_Type_Groupe_Apprenant/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:28:41] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:29:50.992873 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:29:51] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:29:51.008875 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:29:51] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:29:54.155762 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:29:54] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:29:55.083662 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:29:55.085660 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:29:55.089678 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:29:55.091663 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:29:55] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:29:55] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:29:55] "POST /myclass/api/Get_Type_Groupe_Apprenant/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:29:55] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:29:59.853344 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:29:59] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:30:03.875899 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:30:03.877900 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:30:03.880901 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:30:03.882900 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:30:03] "POST /myclass/api/Get_Competence_Domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:30:03.885381 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:30:03.889903 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:30:03] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:30:03] "POST /myclass/api/Get_List_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:30:03] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:30:03.900907 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:30:03] "POST /myclass/api/Get_List_Groupe_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:30:03.905906 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:30:03.907905 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:30:03] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:30:03.913438 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:30:03] "POST /myclass/api/Get_CRM_List_Opportunite_Etape/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:30:03.924437 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:30:03] "POST /myclass/api/Get_Competence_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:30:03] "POST /myclass/api/Get_List_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:30:03] "POST /myclass/api/Get_List_base_document_automatic_setup/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:30:03] "POST /myclass/api/Get_List_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:30:07.372128 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:30:07] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:32:45.702516 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:32:45] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:32:45.712514 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:32:45.722513 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:32:45.728547 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:32:45] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:32:45.732559 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:32:45] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:32:45] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:32:45.759534 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:32:45.764516 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:32:45.771515 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:32:45.777514 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:32:45] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:32:45] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:32:45] "POST /myclass/api/Get_Type_Groupe_Apprenant/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:32:45] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:15.573033 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:15] "POST /myclass/api/Automatic_Creation_Groupe_Member_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:15.641130 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:15] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:20.914113 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:20] "POST /myclass/api/Get_Given_Groupe_Inscrit_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:30.220757 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:30] "POST /myclass/api/Delete_Groupe_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:30.283758 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:30] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:42.307569 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:42.311586 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:42.315569 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:42.319569 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:42] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:42.323569 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:42.331569 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:42] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:42] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:42] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:42] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:42.349587 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:42.351569 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:42] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:42.361594 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:42] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:42.368595 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:42.375116 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:42.381107 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:42] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:42] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:42] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:42] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:43] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:44.003178 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:44.006177 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:44.009179 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:44.013178 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:44.017218 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:44] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:44] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:44.028177 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:44.032207 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:44] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:44.039179 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:44] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:44] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:44.048183 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:44] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:44.054183 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:44] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:44.059183 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:44.066579 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:44] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:44] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:44] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:44] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:45] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:46.148704 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:46.153707 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:46.157720 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:46.163719 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:46.167717 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:46.172245 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:46] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:46.177254 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:46] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:46] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:46.184252 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:33:46.191784 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:46] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:46] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:46] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:46] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:46] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:46] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:48.013517 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:33:48] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:33:54.276546 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:34:03] "POST /myclass/api/Accept_List_AttendeeInscription/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:34:03.313511 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:34:03.315507 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:34:03.318510 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:34:03] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:34:03] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:34:03] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:34:45.437473 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:34:45] "POST /myclass/api/Automatic_Creation_Groupe_Member_Inscrit/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:34:45.504991 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:34:45] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:34:49.074514 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:34:49] "POST /myclass/api/Get_Given_Groupe_Inscrit_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:34:51.429810 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:34:51] "POST /myclass/api/Get_Given_Groupe_Membres/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:35:06.607314 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:35:06.608313 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:35:06.613313 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:35:06.617358 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:35:06.620313 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:35:06.625342 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:06] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:06] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:06] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:06] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:06] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:35:07.345013 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:07] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:07] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:35:16.263149 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:35:16.265149 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:35:16.269147 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:35:16.273149 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:35:16.278156 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:35:16.283154 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:16] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:16] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:16] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:35:16.298670 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:16] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:16] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:35:16.304350 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:16] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:16] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:16] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:35:44.083931 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:35:44] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:02.008518 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:02.011547 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:02.014534 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:02.017546 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:02] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:02.025519 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:02] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:02.031522 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:02] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:02.038519 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:02] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:02] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:02] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:02.048519 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:02.052519 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:02.056546 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:02.063553 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:02] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:02.072521 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:02] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:02] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:02] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:02] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:03] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:05.107594 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:05.113619 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:05.117596 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:05.122117 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:05.126161 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:05] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:05] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:05.134119 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:05] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:05.140627 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:05.141635 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:05] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:05.149768 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:05] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:05] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:05] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:05] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:05] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:07.924844 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:07] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:30.708537 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:30] "POST /myclass/api/Add_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:30.792111 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:30] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:32.690412 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:32.693414 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:32.697410 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:32] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:32] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:32] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:35.445294 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:35] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:39.183138 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:39.184151 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:39.187702 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:39.192704 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:39.198704 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:36:39.202704 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:39] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:39] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:39] "POST /myclass/api/Get_Type_Groupe_Apprenant/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:39] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:39] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:39] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:47.571166 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:47] "POST /myclass/api/Get_Accepted_Insription_From_Session_id_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:52.501344 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:52] "POST /myclass/api/Record_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:36:54.622526 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:36:54] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:37:05.122524 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 17   part nom 17

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 17_90522.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +WARNING:xhtml2pdf.util:getSize: Not a float '90%' +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 16   part nom 16

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 16_98447.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 15   part nom 15

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 15_61067.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 14   part nom 14

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 14_70146.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 13   part nom 13

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 13_28973.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 12   part nom 12

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 12_47474.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 11   part nom 11

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 11_91911.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 10   part nom 10

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 10_50522.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 9   part nom 9

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 9_04781.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 8   part nom 8

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 8_33394.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 7   part nom 7

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 7_40836.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 6   part nom 6

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 6_70753.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 5   part nom 5

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 5_25357.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 4   part nom 4

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 4_85107.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 3   part nom 3

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 3_24196.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 2   part nom 2

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 2_38486.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 1   part nom 1

\n

\n

Vous êtes convoqué pour une évaluation de type : TD.
L\'epreuve se déroulera du 08/11/2025 11:00 au 08/11/2025 12:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 08/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 1_40229.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:37:08] "GET /myclass/api/Send_Evaluation_Convocation_Participant_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f1d2e0f9e7ee9f6ce5b83/690f1d44995b26cde96118e6,690f1d44995b26cde96118e7,690f1d44995b26cde96118e8,690f1d44995b26cde96118e9,690f1d44995b26cde96118ea,690f1d44995b26cde96118eb,690f1d44995b26cde96118ec,690f1d44995b26cde96118ed,690f1d44995b26cde96118ee,690f1d44995b26cde96118ef,690f1d44995b26cde96118f0,690f1d44995b26cde96118f1,690f1d44995b26cde96118f2,690f1d44995b26cde96118f3,690f1d44995b26cde96118f4,690f1d44995b26cde96118f5,690f1d44995b26cde96118f6/66dc4ddf75b3f60c3ea43084 HTTP/1.1" 200 - +INFO:root:2025-11-08 11:43:14.100623 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:43:14] "POST /myclass/api/Update_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:43:14.165962 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:43:14] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:43:22.130895 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:43:22] "POST /myclass/api/Duplicate_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:43:22.224479 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:43:22] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:43:24.498052 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:43:24.500054 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:43:24.504575 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:43:24] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:43:24] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:43:24] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 11:44:50.158545 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 11:44:50.158545 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 11:44:50.158545 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 11:44:50.158545 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 11:44:50.159545 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 11:44:51.426331 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:44:51] "POST /myclass/api/Update_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:44:51.601616 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:44:51] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:44:58.986163 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:44:59] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:45:00.401515 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:45:00.403514 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:45:00.407513 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:45:00.412520 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:45:00.421522 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:45:00] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:45:00.429090 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:45:00] "POST /myclass/api/Get_Type_Groupe_Apprenant/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:45:00] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:45:00] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:45:00] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:45:00] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:45:05.294033 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:45:05] "POST /myclass/api/Get_Accepted_Insription_From_Session_id_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:45:09.987494 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:45:10] "POST /myclass/api/Record_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:45:12.155285 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:45:12] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:45:55.836104 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:45:55] "POST /myclass/api/Update_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:45:55.928206 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:45:55] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:46:40.586142 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:46:40] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:47:08.467455 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:08] "POST /myclass/api/Add_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:47:08.554643 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:08] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:47:10.633939 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:47:10.637476 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:47:10.638473 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:10] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:10] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:10] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:47:29.858076 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:29] "POST /myclass/api/Update_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:47:29.949063 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:29] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:47:32.393442 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:32] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:47:34.340568 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:47:34.343582 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:47:34.344568 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:47:34.350601 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:47:34.355605 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:47:34.364608 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:34] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:34] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:34] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:34] "POST /myclass/api/Get_Type_Groupe_Apprenant/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:34] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:34] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:47:37.307767 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:37] "POST /myclass/api/Get_Accepted_Insription_From_Session_id_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:47:44.299799 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:44] "POST /myclass/api/Record_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:47:46.129541 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:47:46] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:49:24.651483 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:49:24] "POST /myclass/api/Update_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:49:24.747045 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:49:24] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:49:53.851354 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:49:53] "POST /myclass/api/Update_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:49:53.919407 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:49:53] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:51:05.237217 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:51:05.239218 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:51:05.243219 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:51:05.250219 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:51:05.252728 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:51:05.257734 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:51:05] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:51:05] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:51:05.269741 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:51:05] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:51:05] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:51:05] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:51:05.279740 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:51:05] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:51:05] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:51:05] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:51:21.459490 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:51:21] "POST /myclass/api/Get_List_Evaluation_Planification_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:52:04.630607 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:52:04.632607 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:52:04.633607 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:52:04.636609 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:52:04.639629 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:52:04] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:52:04] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 11:52:04.648630 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:52:04] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:52:04] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:52:04] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:52:06] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:52:15.617109 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:52:17.825686 : Cacul_UE_Note_Finale_Standard -could not convert string to float: '-' - Line : 2077 +INFO:root:2025-11-08 11:52:17.833672 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:52:18] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 11:52:18.013119 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:52:18.016125 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:52:18.020126 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:52:18] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:52:18] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:52:18] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 11:53:25.850113 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 11:53:25.850113 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 11:53:25.850113 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 11:53:25.850113 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 11:53:25.850113 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 11:57:49.351732 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 11:57:49.351732 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 11:57:49.351732 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 11:57:49.351732 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 11:57:49.352742 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 11:58:46.348890 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:58:46.356891 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:58:46.365899 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:58:46.384619 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:58:46.403619 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:58:46.411619 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:58:46.414653 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:58:46.426657 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:58:46.438707 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:58:46.454711 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:58:46.465711 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:58:46.474827 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:58:46.489823 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:58:46.495824 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:58:46.508848 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:58:46.523831 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:58:46.539348 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:58:46.549348 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:58:46.555377 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:58:46.566349 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:58:46.573350 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:58:46.580349 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:58:46.592350 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:58:46.598351 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_List_Class_Niveau_Formation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:58:46.679975 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:58:46.682938 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 11:58:46.686935 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:58:46] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:59:12.114141 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:59:12] "POST /myclass/api/Add_Update_UE_To_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 11:59:12.162650 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 11:59:12] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:10:26.846420 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:10:26.846420 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:10:26.846420 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:10:26.846420 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:10:26.846420 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:10:46.914236 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:10:46.915220 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:10:46.915220 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:10:46.915220 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:10:46.915220 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:11:52.554029 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:11:52] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:11:53.432868 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:11:53.435868 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:11:53.438868 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:11:53.441870 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:11:53] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 12:11:53.448868 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:11:53.453874 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:11:53] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:11:53] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:11:53] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:11:53] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:11:54] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:12:05.045948 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:12:06.305117 : Cacul_UE_Note_Finale_Standard -could not convert string to float: '-' - Line : 2095 +INFO:root:2025-11-08 12:12:06.313102 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:root:2025-11-08 12:12:06.406220 : Cacul_Session_Note_Finale_For_calcul_mode_1 -'list' object has no attribute 'keys' - Line : 1351 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:12:06] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 12:12:06.410216 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:12:06.411216 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:12:06.413216 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:12:06] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:12:06] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:12:06] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:13:51.554671 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:13:51.555673 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:13:51.555673 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:13:51.555673 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:13:51.555673 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:15:48.656342 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:15:48.656342 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:15:48.656342 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:15:48.656342 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:15:48.656342 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:16:20.888175 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:20] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:16:21.643880 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:21.645894 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:21.652900 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:21.655881 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:21.658895 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:21.662898 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:21] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:21] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:21] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:21] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:21] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:22] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:16:38.551376 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:38.552377 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:38.555385 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:38.558376 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:38] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:16:38.570377 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:38] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:38] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:38] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:16:38.609888 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:38.611894 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:38.615895 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:38.620894 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:38] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:38] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:16:38.627895 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:38.632895 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:38] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:38] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:16:38.638903 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:38.641903 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:38.646902 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:38] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:38] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:16:38.654420 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:38] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:16:38.658420 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:38.666425 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:38] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:38] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:38] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:39] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:39] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:16:48.605471 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:48.610470 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:48.614473 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:48.621510 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:48.622471 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:48] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:16:48.626470 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:48] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:48] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:16:48.635470 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:48] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:16:48.640485 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:48.643470 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:48] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:48] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:48] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:48] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:48] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:16:50.367058 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:50.369075 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:50.372078 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:50.375062 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:50.382078 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:16:50.385077 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:50] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:50] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:50] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:50] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:50] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:16:51] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:17:16.378782 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:17:16] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:17:17.133669 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:17:17.136670 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:17:17.139671 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:17:17.143671 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:17:17] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 12:17:17.147670 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:17:17.149669 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:17:17] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:17:17] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:17:17] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:17:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:17:18] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:17:27.962206 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:17:29.910192 : Cacul_UE_Note_Finale_Standard -could not convert string to float: '-' - Line : 2098 +INFO:root:2025-11-08 12:17:29.917193 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:root:2025-11-08 12:17:30.018986 : Cacul_Session_Note_Finale_For_calcul_mode_1 -float division by zero - Line : 1444 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:17:30] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 12:17:30.023985 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:17:30.024986 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:17:30.025987 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:17:30] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:17:30] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:17:30] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:19:16.188566 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:19:16.188566 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:19:16.189551 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:19:16.189551 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:19:16.189551 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:20:29.698798 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:20:29.699798 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:20:29.699798 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:20:29.699798 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:20:29.699798 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:20:35.697366 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:20:35.700350 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:20:35] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:20:35] "POST /myclass/api/Get_List_base_calcul_note_class_and_ue_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 12:20:45.833018 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:20:45] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:20:56.035697 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:20:56] "POST /myclass/api/Add_Class_UE_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:20:56.086780 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:20:56] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:20:57.941450 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:20:57] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:21:07.204858 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:21:07] "POST /myclass/api/Add_Class_UE_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:21:07.283373 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:21:07] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:21:22.251937 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:21:22] "POST /myclass/api/Delete_Class_UE_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:21:22.270176 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:21:22] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:21:33.515892 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:21:33] "POST /myclass/api/Delete_Class_UE_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:21:33.532408 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:21:33] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:22:10.045669 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:22:11.113415 : Cacul_UE_Note_Finale_Standard -could not convert string to float: '-' - Line : 2100 +INFO:root:2025-11-08 12:22:11.120409 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:root:2025-11-08 12:22:11.222941 : Cacul_Session_Note_Finale_For_calcul_mode_1 -float division by zero - Line : 1446 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:22:11] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 12:22:11.226876 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:22:11.228946 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:22:11.230945 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:22:11] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:22:11] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:22:11] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:24:31.215937 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:24:31.215937 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:24:31.216937 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:24:31.216937 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:24:31.216937 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:24:43.909882 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:24:44.840983 : Cacul_UE_Note_Finale_Standard -could not convert string to float: '-' - Line : 2102 +INFO:root:2025-11-08 12:24:44.849020 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:root:2025-11-08 12:24:44.951759 : Cacul_Session_Note_Finale_For_calcul_mode_1 -float division by zero - Line : 1448 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:24:44] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 12:24:44.958760 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:24:44.960761 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:24:44.963762 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:24:44] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:24:44] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:24:45] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:26:08.885555 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:26:08.885555 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:26:08.885555 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:26:08.885555 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:26:08.885555 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:26:35.111201 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:26:37.430685 : Cacul_UE_Note_Finale_Standard -could not convert string to float: '-' - Line : 2102 +INFO:root:2025-11-08 12:26:37.438246 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:root:2025-11-08 12:26:37.546192 : Cacul_Session_Note_Finale_For_calcul_mode_1 -list indices must be integers or slices, not str - Line : 1422 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:26:37] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 12:26:37.551193 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:26:37.553192 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:26:37.555192 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:26:37] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:26:37] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:26:37] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:27:54.667382 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:27:54.667382 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:27:54.667382 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:27:54.667382 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:27:54.667382 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:27:57.950591 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:27:58.935548 : Cacul_UE_Note_Finale_Standard -could not convert string to float: '-' - Line : 2102 +INFO:root:2025-11-08 12:27:58.943548 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:root:2025-11-08 12:27:59.053694 : Cacul_Session_Note_Finale_For_calcul_mode_1 -float division by zero - Line : 1448 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:27:59] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 12:27:59.057694 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:27:59.058696 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:27:59.060700 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:27:59] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:27:59] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:27:59] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:29:01.157381 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:29:01.158387 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:29:01.158387 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:29:01.158387 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:29:01.158387 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:29:06.291839 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:29:07.326447 : Cacul_UE_Note_Finale_Standard -could not convert string to float: '-' - Line : 2105 +INFO:root:2025-11-08 12:29:07.334793 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:root:2025-11-08 12:29:07.446159 : Cacul_Session_Note_Finale_For_calcul_mode_1 -float division by zero - Line : 1451 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:29:07] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 12:29:07.450641 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:29:07.452641 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:29:07.454648 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:29:07] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:29:07] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:29:07] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:30:30.433307 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:30:30.433307 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:30:30.433307 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:30:30.433307 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:30:30.433307 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:30:30.491219 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:30:31.120139 : Cacul_UE_Note_Finale_Standard -could not convert string to float: '-' - Line : 2107 +INFO:root:2025-11-08 12:30:31.128034 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:root:2025-11-08 12:30:31.249846 : Cacul_Session_Note_Finale_For_calcul_mode_1 -float division by zero - Line : 1453 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:30:31] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 12:30:31.254835 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:30:31.258841 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:30:31.260841 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:30:31] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:30:31] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:30:31] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:35:23.010663 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:35:23.010663 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:35:23.010663 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:35:23.010663 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:35:23.010663 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:35:29.511604 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:35:29.511604 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:35:29.511604 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:35:29.511604 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:35:29.511604 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:35:53.407144 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:35:53.409149 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:35:53.414149 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:35:53.418147 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:35:53.420149 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:35:53.425660 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:35:53] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:35:53] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:35:53] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:35:53] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:35:53] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:35:54] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:35:59.093402 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:36:00.946775 : Cacul_UE_Note_Finale_Standard -could not convert string to float: '-' - Line : 2113 +INFO:root:2025-11-08 12:36:00.953775 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:root:2025-11-08 12:36:01.068240 : Cacul_Session_Note_Finale_For_calcul_mode_1 -float division by zero - Line : 1459 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:36:01] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 12:36:01.071788 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:36:01.073928 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:36:01.074928 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:36:01] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:36:01] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:36:01] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:38:41.857711 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:38:41.857711 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:38:41.857711 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:38:41.857711 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:38:41.857711 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:39:05.457965 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:39:05.459992 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:39:05] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:39:05] "POST /myclass/api/Get_List_base_calcul_note_class_and_ue_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 12:39:08.747524 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:39:08] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:41:19.660210 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:41:19.660210 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:41:19.660210 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:41:19.660210 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:41:19.660210 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:41:33.856495 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:41:35.308483 : Cacul_UE_Note_Finale_Standard -could not convert string to float: '-' - Line : 2112 +INFO:root:2025-11-08 12:41:35.332505 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:root:2025-11-08 12:41:35.438050 : Cacul_Session_Note_Finale_For_calcul_mode_1 -float division by zero - Line : 1459 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:41:35] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 12:41:35.442228 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:41:35.444115 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:41:35.446121 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:41:35] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:41:35] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:41:35] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:43:23.879692 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:43:23.879692 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:43:23.879692 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:43:23.879692 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:43:23.879692 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:44:31.033191 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:44:31] "POST /myclass/api/Get_List_Evaluation_Planification_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:45:10.753712 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:45:10.753712 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:45:10.753712 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:45:10.753712 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:45:10.753712 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:45:52.339113 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:45:52.339113 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:45:52.339113 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:45:52.339113 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:45:52.339113 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:46:31.281380 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:46:31.281380 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:46:31.281380 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:46:31.281380 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:46:31.281380 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:47:49.248902 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:47:49] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:47:55.262325 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:47:55.266839 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:47:55] "POST /myclass/api/Get_List_base_calcul_note_class_and_ue_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:47:55] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:49:39.440651 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:49:39.440651 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:49:39.440651 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:49:39.440651 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:49:39.440651 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:49:39.500352 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:49:39.502351 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:49:39] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:49:39] "POST /myclass/api/Update_Class_UE_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:49:39.540434 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:49:39] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:51:08.145442 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:51:08.146442 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:51:08.146442 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:51:08.146442 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:51:08.146442 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:51:30.324829 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:51:30.324829 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:51:30.324829 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:51:30.324829 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:51:30.324829 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:52:01.280851 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:52:01.280851 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:52:01.280851 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:52:01.280851 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:52:01.280851 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:53:33.511646 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:53:33.512635 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:53:33.512635 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:53:33.512635 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:53:33.512635 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 12:53:47.279185 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:53:47] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:53:48.426483 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:53:48.427445 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:53:48.433448 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:53:48.436483 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:53:48.439490 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:53:48.445490 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:53:48] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:53:48] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:53:48] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:53:48] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:53:48] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:53:49] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 12:53:51.981421 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:53:53.772294 : Cacul_UE_Note_Finale_Standard -could not convert string to float: '-' - Line : 2112 +INFO:root:2025-11-08 12:53:53.780294 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:root:2025-11-08 12:53:53.911326 : Cacul_Session_Note_Finale_For_calcul_mode_1 -float division by zero - Line : 1459 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:53:53] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 12:53:53.915326 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:53:53.918326 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:53:53.919325 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:53:53] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:53:53] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:53:54] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 12:54:39.660485 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:54:40.039468 : Cacul_UE_Note_Finale_Standard -could not convert string to float: '-' - Line : 2112 +INFO:root:2025-11-08 12:54:40.048752 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:root:2025-11-08 12:54:40.242328 : Cacul_Session_Note_Finale_For_calcul_mode_1 -float division by zero - Line : 1459 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:54:40] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 12:54:40.247596 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:54:40.250106 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 12:54:40.252107 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:54:40] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:54:40] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 12:54:40] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 12:56:36.759533 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 12:56:36.759533 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 12:56:36.759533 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 12:56:36.759533 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 12:56:36.759533 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 13:01:49.431167 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:01:49] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:02:06.179154 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:02:06] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:02:06.891051 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:02:06.892058 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:02:06.894194 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:02:06] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:02:06] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:02:06] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:09:13.800908 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:09:13.800908 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:09:13.801907 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:09:13.801907 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:09:13.801907 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:15:57.458996 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:15:57.458996 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:15:57.458996 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:15:57.458996 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:15:57.458996 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:17:53.905252 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:17:53.905252 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:17:53.905252 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:17:53.905252 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:17:53.905252 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:18:56.977782 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:18:56.977782 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:18:56.978783 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:18:56.978783 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:18:56.978783 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:20:39.252615 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:20:39.252615 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:20:39.253629 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:20:39.253629 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:20:39.253629 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:20:47.402500 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:20:47.402500 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:20:47.403500 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:20:47.403500 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:20:47.403500 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 13:21:25.647604 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:21:25] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:21:26.129898 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:21:26] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:21:33.035128 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:21:34] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:21:34.896075 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:21:34.897074 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:21:34.899074 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:21:34] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:21:34] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:21:34] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:23:09.607668 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:23:09.607668 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:23:09.607668 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:23:09.607668 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:23:09.607668 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 13:23:50.661412 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:23:50] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:23:52.492034 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:23:52.495034 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:23:52.499036 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:23:52.502539 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:23:52.506056 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:23:52] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:23:52] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:23:52] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:23:52] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:23:53] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:24:06.772108 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:24:07.852535 : L'utilisateur destinataire de l'email est invalide +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:24:08] "POST /myclass/api/AddStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:24:08.265839 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:24:08.268839 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:24:08.271349 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:24:08.276349 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:24:08] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:24:08] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:24:08] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:24:08] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:26:39.737701 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:26:39.738658 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:26:39.738658 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:26:39.738658 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:26:39.738658 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 13:26:47.312773 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:26:47.315764 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:26:47.319760 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:26:47.323755 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:26:47.326771 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:47] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:47] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:47] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:47] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:47] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:26:49.556110 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:49] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:26:51.715701 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:26:51.718717 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:26:51.721701 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:26:51.728716 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:26:51.731700 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:51] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:51] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:51] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:51] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:52] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:26:56.698919 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:26:57.654907 : L'utilisateur destinataire de l'email est invalide +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:58] "POST /myclass/api/AddStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:26:58.120163 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:26:58.124158 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:26:58.127158 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:26:58.129664 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:58] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:58] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:58] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:26:58] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:27:50.365042 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:27:50.365042 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:27:50.365042 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:27:50.365042 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:27:50.365042 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:29:28.393236 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:29:28.393236 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:29:28.393236 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:29:28.393236 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:29:28.393236 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 13:29:28.505756 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:29:28] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:29:30.882085 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:29:30] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:29:30.940658 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:29:30] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:29:30.996212 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:29:31.046189 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:29:31] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:29:31.073192 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:29:31] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:29:33] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:29:36.340115 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:29:37.186806 : L'utilisateur destinataire de l'email est invalide +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:29:37] "POST /myclass/api/AddStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:29:37.653045 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:29:37.654028 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:29:37.658604 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:29:37.663626 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:29:37] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:29:37] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:29:37] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:29:37] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:32:34.723390 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:32:34.723390 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:32:34.723390 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:32:34.723390 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:32:34.723390 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:33:10.493777 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:33:10.494776 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:33:10.494776 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:33:10.494776 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:33:10.494776 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:33:59.097494 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:33:59.097494 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:33:59.097494 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:33:59.097494 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:33:59.097494 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:35:18.646833 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:35:18.646833 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:35:18.646833 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:35:18.646833 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:35:18.646833 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:35:48.018719 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:35:48.018719 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:35:48.018719 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:35:48.019722 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:35:48.019722 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:37:39.198103 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:37:39.198103 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:37:39.198103 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:37:39.199125 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:37:39.199125 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 13:37:39.426075 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:37:39] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:37:41.034875 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:37:41] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:37:42.203693 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:37:42.207708 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:37:42.211707 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:37:42.215692 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:37:42.220692 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:37:42] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:37:42] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:37:42] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:37:42] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:37:43] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:37:57.100440 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:37:58.142172 : L'utilisateur destinataire de l'email est invalide +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:37:58] "POST /myclass/api/AddStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:37:58.761201 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:37:58.763176 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:37:58.767178 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:37:58.769947 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:37:58] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:37:58] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:37:58] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:37:58] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:40:11.620244 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:11] "POST /myclass/api/Duplicate_List_Session_Formation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:40:11.795468 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:12] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:40:15.163986 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:40:15.167985 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:40:15.168991 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:40:15.176000 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:15] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:40:15.183000 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:15] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:40:15.186996 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:15] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:40:15.195576 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:40:15.201579 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:15] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:15] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:40:15.207574 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:15] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:15] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:15] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:15] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:40:18.611092 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:40:18.614103 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:40:18.618107 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:40:18.621091 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:40:18.626107 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:18] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:18] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:18] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:18] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:18] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:40:24.347262 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:24] "POST /myclass/api/Get_List_Sequence_Planning_Model_Header/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:40:27.170922 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:27] "POST /myclass/api/Get_Given_Sequence_Planning_Model_With_Option/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:40:31.905684 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:31] "POST /myclass/api/Apply_Planning_Model_To_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:40:31.927701 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:31] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:40:36.715538 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:40:41.062385 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:40:43.565016 : AddStagiairetoClass_mass_for_many_session Ligne 2 : Le code session 'licence_l1_081125' ne correspond pas à la session selectionnée : 'licence_l1_081125_dup' +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:40:43] "POST /myclass/api/AddStagiairetoClass_mass_for_many_session/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:41:12.888931 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:41:12] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:41:12.914945 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:41:12] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:41:12.938978 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:41:12] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:41:12.961456 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:41:12] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:41:12.987458 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:41:13] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:41:15.222128 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:41:15] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:41:18.493835 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:41:21.396301 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 13:41:24.121513 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 13:41:26.638713 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 13:41:29.327616 : L'utilisateur destinataire de l'email est invalide +INFO:root:2025-11-08 13:41:34.966613 : L'utilisateur destinataire de l'email est invalide +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:41:36] "POST /myclass/api/AddStagiairetoClass_mass_for_many_session/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:41:36.097023 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:41:36.127321 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:41:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:41:36.153930 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:41:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:41:36.183028 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:41:36] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:41:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:44:24.412357 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:44:24.413357 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:44:24.417357 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:44:24.421480 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:44:24.427441 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:44:24.428950 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:44:24.435953 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:44:24] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:44:24] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:44:24.445500 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:44:24] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:44:24] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:44:24] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:44:24] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:44:24] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:44:24] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:44:50.260760 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:44:50] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:05.378600 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:05] "POST /myclass/api/Add_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:05.474674 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:05] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:06.953873 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:06.955889 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:06.960889 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:06] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:06] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:06] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:09.722407 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:09.724425 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:09.727420 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:09.733405 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:09.737403 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:09] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:09.747432 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:09] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:09] "POST /myclass/api/Get_Type_Groupe_Apprenant/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:09] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:09] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:09] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:12.003320 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:12] "POST /myclass/api/Get_Accepted_Insription_From_Session_id_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:16.126082 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:16] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:17.666510 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:17] "POST /myclass/api/Get_List_note_evaluation_Ressource_Affectation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:32.088866 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:32.090866 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:32.093870 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:32.097871 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:32.101870 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:32] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:32] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:32.110982 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:32] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:32] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:32.120497 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:32] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:32.123502 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:32.129497 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:32] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:32.133522 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:32] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:32.139039 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:32.148549 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:32] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:32] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:32] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:32] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:33] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:37.930751 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:37.933751 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:37.936751 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:37.940752 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:37] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:37] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:37.946751 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:37.948751 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:37.952752 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:37] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:37] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:37.963751 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:37] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:37.972751 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:37] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:37.977752 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:37.981753 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:37] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:37.989751 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:37] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:37] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:38] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:38] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:38] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:40.316472 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:40.320470 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:40.325475 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:40.326975 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:40.331984 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:40] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:40.339981 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:40] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:40.347201 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:40] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:40] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:40] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:40.357984 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:40] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:40] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:40.362981 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:40] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:40] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:41.761569 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:41] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:46.467366 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:49] "POST /myclass/api/Accept_List_AttendeeInscription/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:49.248964 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:49.250963 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:49.253965 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:49] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:49] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:49] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:53.281612 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:53.285613 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:53.289757 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:53] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:53] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:53] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:54.726394 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:54] "POST /myclass/api/Get_List_note_evaluation_Ressource_Affectation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:55.276998 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:55.280014 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:55.282551 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:55.285569 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:55.290665 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:45:55.300666 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:55] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:55] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:55] "POST /myclass/api/Get_Type_Groupe_Apprenant/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:55] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:55] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:55] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:45:57.859792 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:45:57] "POST /myclass/api/Get_Accepted_Insription_From_Session_id_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:46:02.824943 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:02] "POST /myclass/api/Record_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:46:04.835413 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:04] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:46:17.707842 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:17] "POST /myclass/api/Update_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:46:17.817005 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:17] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:46:23.754992 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:23] "POST /myclass/api/Duplicate_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:46:23.828331 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:23] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:46:26.407967 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:46:26.412008 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:46:26.415029 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:26] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:26] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:26] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:46:43.354953 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:43] "POST /myclass/api/Update_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:46:43.449008 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:43] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:46:45.394653 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:46:45.396670 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:46:45.400655 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:46:45.405655 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:46:45.409669 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:45] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:46:45.424654 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:45] "POST /myclass/api/Get_Type_Groupe_Apprenant/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:45] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:45] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:45] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:45] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:46:48.386185 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:48] "POST /myclass/api/Get_Accepted_Insription_From_Session_id_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:46:53.556619 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:53] "POST /myclass/api/Record_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:46:55.063084 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:46:55] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:47:14.082914 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:14] "POST /myclass/api/Update_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:47:14.148430 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:14] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:47:17.651576 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:17] "POST /myclass/api/Duplicate_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:47:17.723093 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:17] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:47:19.145828 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:47:19.150824 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:47:19.153824 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:19] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:19] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:19] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:47:38.764250 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:38] "POST /myclass/api/Update_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:47:38.859344 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:38] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:47:40.868805 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:40] "POST /myclass/api/Get_List_note_evaluation_Ressource_Affectation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:47:41.368821 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:47:41.371874 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:47:41.373854 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:47:41.377855 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:47:41.380854 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:41] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:47:41.390362 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:41] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:41] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:41] "POST /myclass/api/Get_Type_Groupe_Apprenant/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:41] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:41] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:47:44.296228 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:44] "POST /myclass/api/Get_Accepted_Insription_From_Session_id_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:47:48.529949 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:48] "POST /myclass/api/Record_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:47:50.086179 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:47:50] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:48:03.965251 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:48:03] "POST /myclass/api/Update_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:48:04.063288 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:48:04] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:48:13.891930 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:48:13.894932 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:48:13.896932 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:48:13.902453 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:48:13] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:48:13] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 13:48:13.909482 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:48:13] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 13:48:13.913488 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:48:13] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:48:13] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:48:15] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:48:18.530293 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:48:18.816039 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:48:18] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 13:48:18.945199 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:48:18.946185 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:48:18.949244 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:48:18] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:48:18] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:48:18] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:50:13.899917 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:50:13.900918 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:50:13.900918 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:50:13.900918 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:50:13.900918 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:50:41.649170 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:50:41.649170 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:50:41.649170 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:50:41.649170 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:50:41.650157 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 13:50:46.438994 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:50:47.248402 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:50:47] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 13:50:47.303052 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:50:47.303052 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:50:47.305061 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:50:47] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:50:47] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:50:47] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 13:54:39.167177 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:54:39.169177 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:54:39] "POST /myclass/api/Get_List_base_calcul_note_class_and_ue_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:54:39] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 13:55:33.615849 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 13:55:33.616861 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 13:55:33.616861 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 13:55:33.616861 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 13:55:33.616861 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 13:55:42.654472 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:55:44.431481 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:55:44] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 13:55:44.518047 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:55:44.520065 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:55:44.523047 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:55:44] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:55:44] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:55:44] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 13:59:35.545073 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:59:35.548072 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:35] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:59:35.555077 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:59:35.558591 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:59:35.570596 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:35] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:35] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:35] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:59:35.598254 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:59:35.600253 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:59:35.603252 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:59:35.607255 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:59:35.610253 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:35] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:59:35.619254 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:59:35.626253 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:35] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:59:35.640259 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:35] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:35] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:35] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:35] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:35] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:35] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:59:36.961291 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:59:36.965290 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:59:36.969289 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:36] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:36] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:36] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:59:42.587362 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:42] "POST /myclass/api/Update_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:59:42.688880 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:42] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 13:59:59.538404 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:59:59.922698 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 13:59:59] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 13:59:59.990565 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:59:59.992567 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 13:59:59.994566 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:00:00] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:00:00] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:00:00] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 14:01:17.907611 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:01:17] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:01:18.681495 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:01:18.682523 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:01:18.687626 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:01:18.691198 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:01:18.692179 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:01:18.702238 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:01:18] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:01:18] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:01:18] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:01:18] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:01:18] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:01:20] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:01:21.097999 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:01:21.398839 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:01:21] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 14:01:21.577838 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:01:21.579829 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:01:21.583828 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:01:21] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:01:21] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:01:21] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 14:05:22.052125 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 14:05:22.052125 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 14:05:22.053647 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 14:05:22.053647 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 14:05:22.053647 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 14:05:48.046484 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 14:05:48.046484 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 14:05:48.046484 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 14:05:48.046484 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 14:05:48.046484 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 14:06:56.006082 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 14:06:56.007081 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 14:06:56.007081 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 14:06:56.007081 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 14:06:56.007081 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 14:07:14.823923 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 14:07:14.823923 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 14:07:14.823923 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 14:07:14.823923 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 14:07:14.823923 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 14:08:16.518860 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 14:08:16.519861 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 14:08:16.519861 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 14:08:16.519861 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 14:08:16.519861 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 14:08:50.177208 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 14:08:50.177208 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 14:08:50.177208 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 14:08:50.178204 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 14:08:50.178204 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 14:08:57.820660 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:09:00.997054 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:09:01] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 14:09:01.067059 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:09:01.069060 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:09:01.070058 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:09:01] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:09:01] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:09:01] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 14:16:20.671607 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 14:16:20.672607 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 14:16:20.672607 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 14:16:20.672607 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 14:16:20.672607 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 14:16:22.575796 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:16:24.506755 : Cacul_UE_Note_Finale_Standard Erreur Ponderation. La somme = 0 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:16:24] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 14:16:24.649443 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:16:24.654415 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:16:24.658408 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:16:24] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:16:24] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:16:24] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 14:22:38.253286 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 14:22:38.253286 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 14:22:38.254285 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 14:22:38.254285 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 14:22:38.254285 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 14:26:30.790702 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 14:26:30.791699 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 14:26:30.791699 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 14:26:30.791699 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 14:26:30.791699 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 14:26:46.459776 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 14:26:46.460757 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 14:26:46.460757 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 14:26:46.460757 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 14:26:46.460757 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 14:26:54.033538 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:26:54.038534 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:26:54.042538 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:26:54.045536 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:26:54.047536 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:26:54.054536 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:54] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:54] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:54] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:26:54.071537 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:26:54.075128 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:54] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:26:54.085281 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:54] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:54] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:54] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:54] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:54] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:26:55.697421 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:26:55.698419 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:26:55.702995 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:26:55.704993 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:26:55.712992 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:26:55.717993 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:55] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:55] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:55] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:55] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:55] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:26:57] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:27:02.219074 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:27:02] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 14:27:02.505449 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:27:02.506423 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:27:02.511978 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:27:02] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:27:02] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:27:02] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 14:28:08.466945 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:28:08.470942 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:28:08] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:28:08] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 14:33:48.272036 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 14:33:48.272036 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 14:33:48.272036 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 14:33:48.272036 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 14:33:48.272036 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 14:34:16.865222 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 14:34:16.866211 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 14:34:16.866211 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 14:34:16.866211 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 14:34:16.866211 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 14:35:36.807481 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:35:36.811815 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:35:36] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:35:36] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 14:36:44.229123 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:36:44] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 14:36:44.441478 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:36:44.442960 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:36:44.443964 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:36:44] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:36:44] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:36:44] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:04.361771 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:04.364772 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:04.368769 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:04.371770 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:04] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:04] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:04] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:04] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:05.429290 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:05.432290 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:05] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:05] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:16.633613 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:16.636701 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:16] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:16] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:48.697146 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:48.699146 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:48] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:48.707147 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:48.710146 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:48] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:48.719658 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:48] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:48] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:48.764657 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:48.766657 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:48.770658 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:48.774656 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:48] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:48.779657 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:48] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:48.785656 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:48.790658 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:48] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:48.797678 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:48] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:48.805677 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:48] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:48.810677 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:48] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:48] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:48.817980 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:48.820946 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:48] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:48] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:48] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:49] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:50] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:51.639536 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:51.643534 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:51.647554 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:51.652536 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:51.659577 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:51] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:51.665561 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:51] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:51] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:51.675664 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:51] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:51] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:51.682723 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:51] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:51.687745 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:51] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:51] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:51] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:53.388924 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:53.391074 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:53.395050 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:53.400050 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:37:53.403052 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:53] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 14:37:53.409058 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:53] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:53] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:53] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:53] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:37:54] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:38:03.468822 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:38:03] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 14:38:03.842758 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:38:03.844779 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:38:03.850302 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:38:03] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:38:03] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:38:03] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 14:39:06.072235 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:06.075236 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:06] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:06] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 14:39:24.510252 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:24.515759 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:24.517765 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:24.519766 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:24] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:24] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:39:24.533034 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:24] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:24] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:39:24.572032 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:24.574034 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:24.577033 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:24.579034 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:24.586033 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:24.590036 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:24] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:24] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:24] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:24] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:39:24.604041 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:24.609554 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:24] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:24] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:24] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:24] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:39:29.258078 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:29.261080 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:29.265079 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:29.268080 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:29.274078 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:29.276081 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:29] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:29] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:30] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:30] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:30] "POST /myclass/api/Get_Statgaire_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:39:33.738947 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:33.741915 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:33.745915 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:33.750914 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:33] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:33] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:33] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:33] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:39:34.676833 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:34.680831 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:34.684334 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:34.686341 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:34] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:39:34.696342 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:34.696342 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:34] "POST /myclass/api/GetAttendeeDetail_perSession/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:34] "POST /myclass/api/getRecodedStagiaireImage_from_front/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:39:34.710340 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:34] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:34] "POST /myclass/api/Get_List_Jury_Soutenenace_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:34] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:34] "POST /myclass/api/Get_List_Participant_Notes/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:39:36.776444 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:39:36.780467 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:36] "POST /myclass/api/Get_Inscrit_List_EU_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:39:36] "POST /myclass/api/Get_Inscrit_List_EU/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:40:48.500664 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:40:48] "POST /myclass/api/Add_Update_UE_Jury_Observation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:40:48.635090 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:40:48] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:03.905021 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:41:03.907021 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:41:03.912021 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:41:03.916021 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:03] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:03] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:03] "POST /myclass/api/Get_List_Jury/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:04] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:11.282543 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:11] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class_From_Session_Id/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:23.015580 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:23] "POST /myclass/api/Add_Jury/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:23.122135 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:23] "POST /myclass/api/Get_List_Jury/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:24.813398 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:41:24.814401 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:41:24.819402 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:24] "POST /myclass/api/Get_Given_Jury_With_Members/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:24] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class_From_Session_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:24] "POST /myclass/api/Get_List_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:37.763450 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:37] "POST /myclass/api/Update_Jury/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:37.860896 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:41:37.862896 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:41:37.865897 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:37] "POST /myclass/api/Get_List_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:37] "POST /myclass/api/Get_Given_Jury_With_Members/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:37] "POST /myclass/api/Get_List_Jury/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:44.369479 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:44] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:47.987124 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:47] "POST /myclass/api/Get_Insription_From_Session_id_Reduice_Fields_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:50.365596 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:50] "POST /myclass/api/Add_Update_Apprenant_To_Jury/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:50.461466 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:41:50.462466 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:50] "POST /myclass/api/Get_Given_Jury_Apprenant_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:50] "POST /myclass/api/Get_List_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:53.915944 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:41:53.919946 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:41:53.923942 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:53] "POST /myclass/api/Get_Given_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:53] "POST /myclass/api/Get_Given_Jury_Apprenant_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:53] "POST /myclass/api/Get_Insription_From_Session_id_Reduice_Fields_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:56.671723 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:56] "POST /myclass/api/Get_Given_SessionFormation_From_Id/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:56.769168 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:41:56.772197 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:41:56.775171 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:41:56.779171 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:41:56.785171 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:56] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 14:41:56.792177 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:56] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:56] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:56] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:56] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:41:57] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:42:30.427721 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:42:30] "POST /myclass/api/Add_Update_Inscrit_Juy_Promo_Decision/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:42:30.496236 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:42:30] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 14:42:34.986054 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:42:34.990057 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:42:34.993576 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:42:35] "POST /myclass/api/Get_Given_Jury_With_Members/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:42:35] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class_From_Session_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:42:35] "POST /myclass/api/Get_List_Jury_Soutenenace/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:42:42.972063 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:42:42] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 14:42:43.606266 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:42:43.606266 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:42:43.612286 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:42:43.620272 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:42:43.622865 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 14:42:43.626848 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:42:43] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:42:43] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:42:43] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:42:43] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:42:43] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 14:42:45] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:31:35.251040 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:35] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 16:31:35.445455 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:31:35.446454 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:31:35.450958 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:35] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:35] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:35] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 16:31:43.458688 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:31:43.462688 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:31:43.465689 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:31:43.470702 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:31:43.476688 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:31:43.482687 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:43] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:43] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:43] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:31:43.488695 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:43] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:31:43.494695 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:43] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:43] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:31:43.503204 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:43] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:43] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:43] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:31:45.447545 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:31:45.447545 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:31:45.450544 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:31:45.455546 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:31:45.458546 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:31:45.463061 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:45] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:45] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:45] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:45] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:45] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:31:46] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:32:43.321316 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:32:43.321316 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:32:43.322315 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:32:43.322315 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:32:43.322315 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 16:33:17.662721 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:33:17.665736 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:33:17.669720 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:33:17.674757 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:33:17.677719 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:17] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:33:17.689719 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:17] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:33:17.695725 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:33:17.705236 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:17] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:17] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:17] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:33:17.717244 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:17] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:17] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:33:20.017155 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:33:20.020152 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:33:20.024171 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:33:20.029154 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:20] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 16:33:20.034154 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:20] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:20] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 16:33:20.044154 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:20] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:20] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:33:22] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:35:17.673990 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:35:17.678007 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:35:17.680989 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:35:17.686038 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:17] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:35:17.691524 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:17] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:17] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:17] "POST /myclass/api/Get_List_Groupe_Inscrit_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:17] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:35:20.169918 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:35:20.172929 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:35:20.176928 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:35:20.180929 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:35:20.185926 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:20] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 16:35:20.192994 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:20] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:20] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:20] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:20] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:21] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:35:34.897875 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:35] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 16:35:35.103126 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:35:35.106127 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:35:35.110166 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:35] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:35] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:35:35] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:36:09.150912 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:36:09.151916 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:36:09.151916 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:36:09.151916 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:36:09.151916 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:37:19.043430 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:37:19.043430 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:37:19.043430 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:37:19.043430 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:37:19.043430 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 16:37:19.103733 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:37:19] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 16:37:19.276986 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:37:19.278989 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:37:19.278989 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:37:19] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:37:19] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:37:19] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 16:37:28.466367 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:37:28] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 16:37:28.846798 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:37:28.847829 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:37:28.850812 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:37:28] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:37:28] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:37:28] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:48:02.756376 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:48:02.757376 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:48:02.757376 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:48:02.757376 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:48:02.757376 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 16:48:35.775028 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:48:36] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 16:48:36.173299 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:48:36.175297 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:48:36.180299 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:48:36] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:48:36] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:48:36] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:49:58.069624 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:49:58.069624 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:49:58.069624 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:49:58.069624 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:49:58.069624 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:50:21.835972 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:50:21.836971 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:50:21.836971 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:50:21.836971 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:50:21.836971 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 16:50:26.035444 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:50:26] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 16:50:26.496657 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:50:26.501650 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:50:26.509740 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:50:26] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:50:26] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:50:26] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:50:48.775324 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:50:48.776326 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:50:48.776326 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:50:48.776326 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:50:48.776326 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 16:50:53.778559 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:50:54] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 16:50:54.156944 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:50:54.158944 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:50:54.160944 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:50:54] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:50:54] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:50:54] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:51:37.720014 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:51:37.721001 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:51:37.721001 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:51:37.721001 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:51:37.721001 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 16:52:34.204438 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:34] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 16:52:34.671716 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:34.674716 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:34.675725 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:34] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:34] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:34] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 16:52:52.297153 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:52] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:52:54.026720 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:54] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:52:54.670911 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:54.673913 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:54.676418 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:54.681644 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:54.686687 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:54.693655 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:54] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:54] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:54] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:54] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:54] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:55] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:52:58.393278 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:58.395273 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:58.397272 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:58] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:52:58.402606 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:58] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:52:58.412606 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:58] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:58] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:52:58.470642 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:58.472643 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:58.476642 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:58.479642 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:58] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:52:58.485155 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:58] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:52:58.490155 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:58.499154 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:58] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:58] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:52:58.504154 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:58] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:58] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:52:58.511156 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:58] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:52:58.516154 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:58.520154 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:52:58.521154 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:58] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:58] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:58] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:59] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:52:59] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:53:02.953133 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:53:02.956129 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:53:02.957170 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:53:02.965132 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:02] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:53:02.973130 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:53:02.979137 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:02] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:53:02.985135 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:02] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:02] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:02] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:53:02.995679 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:53:03.000666 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:03] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:03] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:03] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:03] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:53:05.429004 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:53:05.432006 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:53:05.435035 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:53:05.439004 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:53:05.442006 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:53:05.445006 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:05] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:05] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:05] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:05] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:05] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:06] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:53:50.967309 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:53:50.967309 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:53:50.967309 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:53:50.967309 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:53:50.967309 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 16:53:55.461847 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:55] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 16:53:55.933077 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:53:55.935077 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:53:55.945083 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:55] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:56] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:53:56] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:55:23.474487 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:55:23.474487 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:55:23.474487 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:55:23.474487 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:55:23.474487 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:55:44.074185 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:55:44.074185 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:55:44.074185 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:55:44.074185 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:55:44.074185 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:56:48.340770 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:56:48.340770 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:56:48.340770 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:56:48.340770 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:56:48.340770 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 16:56:48.399282 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:56:48] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:56:54.031858 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:56:54.036860 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:56:54.039859 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:56:54.046861 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:56:54.057857 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:56:54] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 16:56:54.069857 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:56:54] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:56:54] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:56:54] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:56:54] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:56:55] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:57:06.610519 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:57:06] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:57:07.157054 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:57:07.159071 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:57:07.164071 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:57:07.168059 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:57:07.172055 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:57:07.175473 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:57:07] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:57:07] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:57:07] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:57:07] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:57:07] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:57:08] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 16:57:12.372281 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:57:14.449080 : Cacul_Session_Note_Finale_For_calcul_Stanard -'rang' - Line : 2913 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:57:14] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 16:57:14.496373 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:57:14.497372 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:57:14.501373 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:57:14] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:57:14] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:57:14] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:58:37.029647 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:58:37.029647 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:58:37.029647 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:58:37.029647 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:58:37.029647 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:59:04.750702 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:59:04.750702 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:59:04.750702 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:59:04.750702 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:59:04.750702 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 16:59:28.854261 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 16:59:28.854261 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 16:59:28.854261 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 16:59:28.854261 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 16:59:28.854261 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 16:59:31.758899 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:59:32] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 16:59:32.024266 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:59:32.027267 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 16:59:32.034275 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:59:32] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:59:32] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 16:59:32] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 17:01:16.969366 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 17:01:16.970365 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 17:01:16.970365 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 17:01:16.970365 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 17:01:16.970365 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 17:01:20.901681 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:22] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 17:01:22.551708 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:01:22.555885 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:01:22.558888 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:22] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:22] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:22] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:root:2025-11-08 17:01:28.615372 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:01:28.617373 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:01:28.620372 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:01:28.622372 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:28] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-08 17:01:28.635374 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:28] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:28] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:28] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-08 17:01:28.679817 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:01:28.681816 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:01:28.683815 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:01:28.687818 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:28] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 17:01:28.691816 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:28] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-08 17:01:28.696815 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:28] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:28] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-08 17:01:28.703816 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:28] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-08 17:01:28.707814 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:28] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-08 17:01:28.712814 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:28] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-08 17:01:28.717816 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:01:28.719815 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:01:28.725816 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:28] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:28] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:28] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:29] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:01:29] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 17:02:05.448072 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 17:02:05.448072 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 17:02:05.448072 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 17:02:05.448072 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 17:02:05.448072 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 17:02:17.363154 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 17:02:17.363154 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 17:02:17.363154 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 17:02:17.363154 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 17:02:17.363154 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 17:03:00.346081 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 17:03:00.346081 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 17:03:00.346081 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 17:03:00.347076 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 17:03:00.347076 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 17:03:25.514017 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 17:03:25.515522 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 17:03:25.515522 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 17:03:25.515522 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 17:03:25.515522 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 17:03:40.019207 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 17:03:40.019207 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 17:03:40.019207 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 17:03:40.019207 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 17:03:40.019207 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 17:03:58.218990 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 17:03:58.218990 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 17:03:58.218990 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 17:03:58.218990 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 17:03:58.218990 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 17:04:20.464195 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:04:20.470192 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:04:20.474196 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:04:20.478191 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:04:20.482193 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:04:20.485199 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:04:20.488201 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:04:20.495201 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:20] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:20] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-08 17:04:20.506716 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:20] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:20] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:20] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:20] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:20] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:20] "POST /myclass/api/Get_List_UE_Given_SessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:20] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-08 17:04:22.437113 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:04:22.439172 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:04:22.443155 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:04:22.448156 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:04:22.453660 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:04:22.454667 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:22] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:22] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:22] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:22] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:22] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:23] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-08 17:04:23.762481 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:24] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 17:04:24.107762 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:04:24.111764 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:04:24.117763 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:24] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:24] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:04:24] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 17:05:30.085838 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 17:05:30.085838 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 17:05:30.085838 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 17:05:30.085838 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 17:05:30.085838 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 17:05:36.709485 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:05:37] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 17:05:37.191638 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:05:37.193656 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:05:37.195679 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:05:37] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:05:37] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:05:37] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 17:06:11.286638 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 17:06:11.286638 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 17:06:11.286638 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 17:06:11.286638 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 17:06:11.286638 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 17:06:12.877855 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:06:13] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 17:06:13.242433 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:06:13.245445 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:06:13.249429 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:06:13] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:06:13] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:06:13] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 17:07:18.301431 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 17:07:18.301431 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 17:07:18.301431 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 17:07:18.301431 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 17:07:18.301431 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 17:07:30.420279 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:07:30] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 17:07:30.694477 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:07:30.696466 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:07:30.700450 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:07:30] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:07:30] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:07:30] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 17:08:41.755105 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 17:08:41.755105 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 17:08:41.755105 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 17:08:41.755105 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 17:08:41.755105 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 17:08:41.814829 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:08:41] "POST /myclass/api/Calcul_Note_Classement_Session HTTP/1.1" 200 - +INFO:root:2025-11-08 17:08:41.998710 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:08:42.003743 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-08 17:08:42.005750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:08:42] "POST /myclass/api/Get_List_Evaluation_UE_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:08:42] "POST /myclass/api/Get_List_Evaluation_Final_Note_Classement_Detail_With_Filter HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:08:42] "POST /myclass/api/Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 17:09:08.585356 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 17:09:08.585356 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 17:09:08.585356 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 17:09:08.585356 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 17:09:08.585356 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-08 17:09:51.018931 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-08 17:09:51.018931 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-08 17:09:51.019931 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-08 17:09:51.019931 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-08 17:09:51.019931 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-08 17:09:51.204182 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 5   part 5
Né(e) le
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION212.6711.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION212.6711.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION212.6711.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION212.6711.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
212.67
\n

 

\n

Imprimé le : 08/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
212.67
\n

 

\n

Imprimé le : 08/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
212.67
\n

 

\n

Imprimé le : 08/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
212.67
\n

 

\n

Imprimé le : 08/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 5_part 5_851.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [08/Nov/2025 17:09:53] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a7c995b26cde9611a4b HTTP/1.1" 200 - +INFO:root:2025-11-09 09:36:29.963032 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 09:36:29] "POST /myclass/api/Get_Personnalisable_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-09 09:36:29.967015 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 09:36:29] "POST /myclass/api/Get_List_Partner_Document_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 09:36:36.691269 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 09:36:36] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 09:36:38.024945 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 09:36:38.028946 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 09:36:38] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 09:36:38] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-09 09:36:48.547750 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 09:36:48] "POST /myclass/api/Get_Given_Personnalisable_Fields_By_template_ref_interne/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 09:43:04.090653 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 09:43:04.090653 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 09:43:04.090653 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 09:43:04.090653 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 09:43:04.090653 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 09:44:15.814239 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 09:44:15.814239 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 09:44:15.814239 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 09:44:15.814239 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 09:44:15.815237 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 09:44:37.570542 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 09:44:37.570542 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 09:44:37.570542 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 09:44:37.570542 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 09:44:37.570542 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 09:45:01.462005 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_387.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 09:45:03] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 09:47:26.861092 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 09:47:26.861092 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 09:47:26.861092 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 09:47:26.861092 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 09:47:26.861092 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 09:47:31.525157 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_047.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 09:47:32] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 09:48:31.179189 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 09:48:31.179189 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 09:48:31.180191 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 09:48:31.180191 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 09:48:31.180191 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 09:48:41.137144 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_526.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 09:48:42] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 09:49:12.919970 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 09:49:12.919970 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 09:49:12.919970 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 09:49:12.919970 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 09:49:12.919970 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 09:49:17.606033 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_667.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 09:49:18] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 09:49:54.964563 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 09:49:54.964563 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 09:49:54.964563 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 09:49:54.964563 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 09:49:54.964563 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 09:50:02.301176 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_806.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 09:50:03] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 09:50:26.830274 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 09:50:26.830274 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 09:50:26.830274 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 09:50:26.830274 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 09:50:26.830274 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 09:50:31.461906 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_902.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 09:50:32] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 09:51:45.224147 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 09:51:45.224147 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 09:51:45.224147 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 09:51:45.224147 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 09:51:45.225147 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 09:51:45.370698 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_087.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 09:51:45] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 09:53:01.297463 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 09:53:01.297463 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 09:53:01.297463 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 09:53:01.297463 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 09:53:01.297463 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 09:55:08.921832 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 09:55:08.921832 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 09:55:08.921832 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 09:55:08.921832 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 09:55:08.921832 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 09:55:15.558994 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_206.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:root:2025-11-09 09:55:19.577667 : Create_Bulletin_By_Inscrit_PDF -'DM Sans' - Line : 3294 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 09:55:19] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 500 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 09:56:30.768920 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 09:56:30.768920 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 09:56:30.768920 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 09:56:30.768920 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 09:56:30.768920 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 09:59:48.457853 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 09:59:48.458856 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 09:59:48.458856 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 09:59:48.458856 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 09:59:48.458856 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:00:26.809786 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:00:26.809786 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:00:26.809786 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:00:26.809786 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:00:26.809786 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:00:47.461287 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_192.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:root:2025-11-09 10:00:50.307412 : Create_Bulletin_By_Inscrit_PDF -'Aptos (Corps)' - Line : 3294 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:00:50] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 500 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:01:09.681997 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:01:09.681997 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:01:09.681997 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:01:09.681997 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:01:09.681997 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:01:15.573026 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_923.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:root:2025-11-09 10:01:18.188556 : Create_Bulletin_By_Inscrit_PDF -'Aptos' - Line : 3294 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:01:18] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 500 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:01:38.682972 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:01:38.682972 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:01:38.682972 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:01:38.682972 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:01:38.682972 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:01:40.005551 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_408.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:01:40] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:02:43.641088 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:02:43.641088 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:02:43.641088 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:02:43.641088 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:02:43.641088 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:02:57.245258 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_109.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:02:58] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:04:08.113684 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:04:08.113684 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:04:08.113684 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:04:08.113684 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:04:08.113684 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:04:13.220354 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_369.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:04:14] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:05:56.490819 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:05:56.490819 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:05:56.491833 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:05:56.491833 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:05:56.491833 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:05:56.727912 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_196.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:05:58] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:06:29.408035 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:06:29.408035 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:06:29.408035 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:06:29.408035 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:06:29.408035 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:07:06.249130 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:07:06.250131 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:07:06.250131 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:07:06.250131 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:07:06.250131 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:07:36.121110 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:07:36.121110 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:07:36.121110 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:07:36.121110 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:07:36.121110 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:07:41.005295 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_029.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:07:42] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:08:38.366277 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:08:38.366277 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:08:38.366277 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:08:38.366277 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:08:38.366277 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:08:39.307916 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_491.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:08:41] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:09:17.703594 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:09:17.703594 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:09:17.704596 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:09:17.704596 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:09:17.704596 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:09:30.069176 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_811.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:09:31] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:10:12.682100 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:10:12.682100 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:10:12.682100 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:10:12.682100 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:10:12.682100 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:10:12.869002 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_218.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:10:13] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:10:48.909034 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:10:48.909034 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:10:48.909034 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:10:48.909034 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:10:48.909034 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:11:01.821617 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_176.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:11:02] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:13:15.516740 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:13:15.516740 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:13:15.517740 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:13:15.517740 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:13:15.517740 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:13:33.070608 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_233.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:13:34] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:13:58.991262 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:13:58.991262 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:13:58.991262 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:13:58.991262 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:13:58.991262 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:14:09.100315 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_003.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:14:10] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:14:49.986255 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:14:49.987252 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:14:49.987252 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:14:49.987252 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:14:49.987252 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:14:50.180245 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_806.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:14:51] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:15:32.887715 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:15:32.887715 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:15:32.887715 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:15:32.887715 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:15:32.887715 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:15:50.437645 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:15:50.437645 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:15:50.437645 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:15:50.437645 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:15:50.437645 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:15:59.367593 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:15:59.368598 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:15:59.368598 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:15:59.368598 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:15:59.368598 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:16:07.554523 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_807.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:16:09] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:17:42.434740 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:17:42.434740 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:17:42.434740 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:17:42.434740 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:17:42.434740 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:18:24.906683 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:18:24.906683 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:18:24.906683 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:18:24.906683 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:18:24.906683 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:19:14.133719 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:19:14.134720 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:19:14.134720 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:19:14.134720 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:19:14.134720 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:22:29.953155 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:22:29.954155 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:22:29.954155 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:22:29.954155 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:22:29.954155 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:23:33.256551 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:23:33.256551 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:23:33.256551 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:23:33.256551 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:23:33.256551 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:23:54.824760 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:23:54.825762 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:23:54.825762 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:23:54.825762 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:23:54.825762 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:26:25.309068 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:26:25.309068 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:26:25.309068 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:26:25.309068 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:26:25.309068 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:29:41.067727 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:29:41.068745 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:29:41.068745 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:29:41.068745 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:29:41.068745 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:29:41.133347 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_061.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:29:41] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:30:13.713781 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:30:13.713781 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:30:13.713781 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:30:13.713781 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:30:13.713781 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:30:46.868585 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:30:46.868585 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:30:46.868585 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:30:46.868585 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:30:46.868585 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:30:56.102758 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_892.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:30:58] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:32:06.503153 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:32:06.504154 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:32:06.504154 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:32:06.504154 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:32:06.504154 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:32:07.262693 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_519.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:32:08] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:33:01.991481 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:33:01.991481 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:33:01.991481 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:33:01.991481 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:33:01.991481 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:33:08.946822 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_307.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:33:10] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:33:56.322243 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:33:56.322243 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:33:56.323238 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:33:56.323238 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:33:56.323238 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:33:56.511140 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_319.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:33:57] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:34:31.744701 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:34:31.745716 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:34:31.745716 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:34:31.745716 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:34:31.745716 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:34:46.596968 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_443.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:34:47] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:36:37.024803 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:36:37.024803 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:36:37.024803 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:36:37.024803 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:36:37.024803 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:38:20.478127 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:38:20] "POST /myclass/api/Update_Partner_Document/ HTTP/1.1" 200 - +INFO:root:2025-11-09 10:38:20.542134 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:38:20] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:39:48.349666 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:39:48.350638 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:39:48.350638 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:39:48.350638 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:39:48.350638 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:43:44.007676 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:43:44.007676 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:43:44.008679 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:43:44.008679 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:43:44.008679 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:44:03.524469 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:44:03.524469 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:44:03.525471 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:44:03.525471 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:44:03.525471 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:44:12.418670 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_821.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:root:2025-11-09 10:44:14.978487 : Create_Bulletin_By_Inscrit_PDF -'num_nda' - Line : 3235 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:44:14] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 500 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:44:57.767892 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:44:57.768890 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:44:57.768890 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:44:57.768890 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:44:57.768890 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:45:08.131910 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_459.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:45:09] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:48:44.173942 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:48:44.173942 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:48:44.173942 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:48:44.173942 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:48:44.173942 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:48:55.837791 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:48:55.838911 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:48:55.838911 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:48:55.838911 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:48:55.838911 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:48:56.046413 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_366.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:root:2025-11-09 10:48:58.453848 : Create_Bulletin_By_Inscrit_PDF -'societe_adr_telephone' - Line : 3239 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:48:58] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 500 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:49:31.907941 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:49:31.907941 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:49:31.907941 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:49:31.907941 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:49:31.908926 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:49:32.135817 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_751.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:49:33] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:50:19.833854 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:50:19.833854 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:50:19.833854 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:50:19.833854 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:50:19.833854 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:50:51.231486 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:50:51.231486 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:50:51.231486 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:50:51.231486 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:50:51.231486 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:51:45.069099 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:51:45.069099 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:51:45.070096 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:51:45.070096 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:51:45.070096 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\base_class_calcul_note.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:52:52.643790 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:52:52.643790 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:52:52.643790 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:52:52.644777 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:52:52.644777 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 10:53:16.540765 : Security check : IP adresse '127.0.0.1' connected +DEBUG:matplotlib.pyplot:Loaded backend tkagg version 8.6. +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 1189 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 2994 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 374 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 286 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 263 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 387 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 436 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 351 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sBIT' 41 4 +DEBUG:PIL.PngImagePlugin:b'sBIT' 41 4 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 364 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0. +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CURLZ___.TTF', name='Curlz MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALN.TTF', name='Arial', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 6.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUABI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\wingding.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegUIVar.ttf', name='Segoe UI Variable', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSR.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarab.ttf', name='Candara', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRITANIC.TTF', name='Britannic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHV.TTF', name='Franklin Gothic Heavy', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTEXTRA.TTF', name='MT Extra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MATURASC.TTF', name='Matura MT Script Capitals', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunsl.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGSOL.TTF', name='Niagara Solid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelb.ttf', name='Corbel', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSB.TTF', name='Berlin Sans FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERB____.TTF', name='Perpetua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\NIAGENG.TTF', name='Niagara Engraved', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABK.TTF', name='Franklin Gothic Book', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JOKERMAN.TTF', name='Jokerman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicbd.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILLUBCD.TTF', name='Gill Sans Ultra Bold Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoesc.ttf', name='Segoe Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailub.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OUTLOOK.TTF', name='MS Outlook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILB____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsunb.ttf', name='SimSun-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrii.ttf', name='Calibri', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoepr.ttf', name='Segoe Print', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAVIE.TTF', name='Ravie', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\KUNSTLER.TTF', name='Kunstler Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILSANUB.TTF', name='Gill Sans Ultra Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibriz.ttf', name='Calibri', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\IMPRISHA.TTF', name='Imprint MT Shadow', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbel.ttf', name='Corbel', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuiz.ttf', name='Segoe UI', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbell.ttf', name='Corbel', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIST.TTF', name='Calisto MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibri.ttf', name='Calibri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTB.TTF', name='Calisto MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjh.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASMD.TTF', name='Eras Medium ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candara.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrima.ttf', name='Ebrima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCM____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAI.TTF', name='Book Antiqua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaral.ttf', name='Candara', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhbd.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAMDCN.TTF', name='Franklin Gothic Medium Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriai.ttf', name='Cambria', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCB____.TTF', name='Tw Cen MT Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consola.ttf', name='Consolas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrib.ttf', name='Calibri', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARABD.TTF', name='Garamond', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUB.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolab.ttf', name='Consolas', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTILI.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\RAGE.TTF', name='Rage Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARLRDBD.TTF', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSDI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSD.TTF', name='Lucida Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ebrimabd.ttf', name='Ebrima', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariali.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 7.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKB.TTF', name='Rockwell', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BROADW.TTF', name='Broadway', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CBI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ONYX.TTF', name='Onyx', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCK.TTF', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEB.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BKANT.TTF', name='Book Antiqua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeprb.ttf', name='Segoe Print', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LATINWD.TTF', name='Wide Latin', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palabi.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADM.TTF', name='Franklin Gothic Demi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFI.TTF', name='Californian FB', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Inkfree.ttf', name='Ink Free', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEDI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICB.TTF', name='Century Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\micross.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbd.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COOPBL.TTF', name='Cooper Black', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTI.TTF', name='Calisto MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHIC.TTF', name='Century Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCRIPTBL.TTF', name='Script MT Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FORTE.TTF', name='Forte', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKBI.TTF', name='Rockwell', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRADHITC.TTF', name='Bradley Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiab.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERTIBD.TTF', name='Perpetua Titling MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYB.TTF', name='Agency FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_B.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyi.ttf', name='Microsoft Yi Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BSSYM7.TTF', name='Bookshelf Symbol 7', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyhl.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITED.TTF', name='Lucida Bright', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolai.ttf', name='Consolas', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\INFROMAN.TTF', name='Informal Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SHOWG.TTF', name='Showcard Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRLNSDB.TTF', name='Berlin Sans FB Demi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspab.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HATTEN.TTF', name='Haettenschweiler', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSI.TTF', name='Goudy Old Style', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoescb.ttf', name='Segoe Script', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisym.ttf', name='Segoe UI Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuii.ttf', name='Segoe UI', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRAHVIT.TTF', name='Franklin Gothic Heavy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCC____.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSPCL.TTF', name='MS Reference Specialty', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgun.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbi.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 7.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VLADIMIR.TTF', name='Vladimir Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF-Italic.ttf', name='Sitka', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLI.TTF', name='Bell MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguili.ttf', name='Segoe UI', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisbi.ttf', name='Segoe UI', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisli.ttf', name='Segoe UI', style='italic', variant='normal', weight=350, stretch='normal', size='scalable')) = 11.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ALGER.TTF', name='Algerian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelz.ttf', name='Corbel', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ariblk.ttf', name='Arial', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 6.888636363636364 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANS.TTF', name='Lucida Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucit.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framdit.ttf', name='Franklin Gothic Medium', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIL_____.TTF', name='Gill Sans MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OLDENGL.TTF', name='Old English Text MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtext.ttf', name='Myanmar Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comic.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Nirmala.ttc', name='Nirmala UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comici.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-MEDIUM.TTF', name='Dubai', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAX.TTF', name='Lucida Fax', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarali.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\pala.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-REGULAR.TTF', name='Dubai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbi.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ENGR.TTF', name='Engravers MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesi.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILI____.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PRISTINA.TTF', name='Pristina', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXD.TTF', name='Lucida Fax', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICI.TTF', name='Century Gothic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanz.ttf', name='Constantia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKB.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanab.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.9713636363636367 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BRUSHSCI.TTF', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSBI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARNGTON.TTF', name='Harrington', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNI.TTF', name='Arial', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 7.613636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mingliub.ttc', name='MingLiU-ExtB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELL.TTF', name='Bell MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candaraz.ttf', name='Candara', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\malgunbd.ttf', name='Malgun Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelUIsl.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BAUHS93.TTF', name='Bauhaus 93', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiai.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CASTELAR.TTF', name='Castellar', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuisl.ttf', name='Segoe UI', style='normal', variant='normal', weight=350, stretch='normal', size='scalable')) = 10.0975 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOSB.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITEI.TTF', name='Lucida Bright', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguiemj.ttf', name='Segoe UI Emoji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCCB___.TTF', name='Rockwell Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeui.ttf', name='Segoe UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\lucon.ttf', name='Lucida Console', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothL.ttc', name='Yu Gothic', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTL.TTF', name='Copperplate Gothic Light', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TEMPSITC.TTF', name='Tempus Sans ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuib.ttf', name='Segoe UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SimsunExtG.ttf', name='SimSun-ExtG', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARA.TTF', name='Garamond', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbd.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAGNETOB.TTF', name='Magneto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERI____.TTF', name='Perpetua', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRSCRIPT.TTF', name='French Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSI.TTF', name='Bookman Old Style', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibli.ttf', name='Segoe UI', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\STENCIL.TTF', name='Stencil', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebucbd.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguisb.ttf', name='Segoe UI', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PLAYBILL.TTF', name='Playbill', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PALSCRI.TTF', name='Palace Script MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASLGHT.TTF', name='Eras Light ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_PSTC.TTF', name='Bodoni MT', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLECB.TTF', name='Gloucester MT Extra Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNB.TTF', name='Arial', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 6.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriab.ttf', name='Cambria', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCEDSCR.TTF', name='Edwardian Script ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CHILLER.TTF', name='Chiller', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\consolaz.ttf', name='Consolas', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\JUICE___.TTF', name='Juice ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mvboli.ttf', name='MV Boli', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BASKVILL.TTF', name='Baskerville Old Face', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\javatext.ttf', name='Javanese Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palai.ttf', name='Palatino Linotype', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALISTBI.TTF', name='Calisto MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMIT.TTF', name='Franklin Gothic Demi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VINERITC.TTF', name='Viner Hand ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PERBI___.TTF', name='Perpetua', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\monbaiti.ttf', name='Mongolian Baiti', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERTI.TTF', name='High Tower Text', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 6.413636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msyh.ttc', name='Microsoft YaHei', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\tahomabd.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCM_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LHANDW.TTF', name='Lucida Handwriting', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PER_____.TTF', name='Perpetua', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCBI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\courbi.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbelli.ttf', name='Corbel', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKEB.TTF', name='Rockwell Extra Bold', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASDEMI.TTF', name='Eras Demi ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\mmrtextb.ttf', name='Myanmar Text', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOTHICBI.TTF', name='Century Gothic', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COLONNA.TTF', name='Colonna MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothM.ttc', name='Yu Gothic', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCB_____.TTF', name='Tw Cen MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\couri.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEBO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugib.ttf', name='Gadugi', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibrili.ttf', name='Calibri', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguibl.ttf', name='Segoe UI', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWAD.TTF', name='Leelawadee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FELIXTI.TTF', name='Felix Titling', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\times.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\himalaya.ttf', name='Microsoft Himalaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SitkaVF.ttf', name='Sitka', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LBRITE.TTF', name='Lucida Bright', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PARCHM.TTF', name='Parchment', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\sylfaen.ttf', name='Sylfaen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constan.ttf', name='Constantia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCCEB.TTF', name='Tw Cen MT Condensed Extra Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_BLAR.TTF', name='Bodoni MT', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\TCMI____.TTF', name='Tw Cen MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\framd.ttf', name='Franklin Gothic Medium', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\palab.ttf', name='Palatino Linotype', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-LIGHT.TTF', name='Dubai', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\georgiaz.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\PAPYRUS.TTF', name='Papyrus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GARAIT.TTF', name='Garamond', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTURY.TTF', name='Century', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\bahnschrift.ttf', name='Bahnschrift', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENTAUR.TTF', name='Centaur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BERNHC.TTF', name='Bernard MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ROCKI.TTF', name='Rockwell', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ERASBD.TTF', name='Eras Bold ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Gabriola.ttf', name='Gabriola', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG2.TTF', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SansSerifCollection.ttf', name='Sans Serif Collection', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNTI.TTF', name='Elephant', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LCALLIG.TTF', name='Lucida Calligraphy', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\gadugi.ttf', name='Gadugi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRADMCN.TTF', name='Franklin Gothic Demi Cond', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GLSNECB.TTF', name='Gill Sans MT Ext Condensed Bold', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GIGI.TTF', name='Gigi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LEELAWDB.TTF', name='Leelawadee', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\AGENCYR.TTF', name='Agency FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CB.TTF', name='Bodoni MT', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCBLKAD.TTF', name='Blackadder ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taile.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msgothic.ttc', name='MS Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CENSCBK.TTF', name='Century Schoolbook', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constanb.ttf', name='Constantia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\constani.ttf', name='Constantia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MTCORSVA.TTF', name='Monotype Corsiva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ntailu.ttf', name='Microsoft New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\simsun.ttc', name='SimSun', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cour.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\POORICH.TTF', name='Poor Richard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\taileb.ttf', name='Microsoft Tai Le', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFR.TTF', name='Californian FB', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKBI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILC____.TTF', name='Gill Sans MT Condensed', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GILBI___.TTF', name='Gill Sans MT', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FTLTLT.TTF', name='Footlight MT Light', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ARIALNBI.TTF', name='Arial', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 7.8986363636363635 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FRABKIT.TTF', name='Franklin Gothic Book', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_CI.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPE.TTF', name='Lucida Sans Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\OCRAEXT.TTF', name='OCR A Extended', style='normal', variant='normal', weight=400, stretch='expanded', size='scalable')) = 10.25 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SegoeIcons.ttf', name='Segoe Fluent Icons', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambria.ttc', name='Cambria', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\corbeli.ttf', name='Corbel', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\timesbi.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LSANSI.TTF', name='Lucida Sans', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segmdl2.ttf', name='Segoe MDL2 Assets', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\l_10646.ttf', name='Lucida Sans Unicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LTYPEO.TTF', name='Lucida Sans Typewriter', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelaUIb.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\VIVALDII.TTF', name='Vivaldi', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SCHLBKI.TTF', name='Century Schoolbook', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanai.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 4.6863636363636365 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LFAXDI.TTF', name='Lucida Fax', style='italic', variant='normal', weight=600, stretch='normal', size='scalable')) = 11.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\arialbd.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 6.698636363636363 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDOS.TTF', name='Goudy Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\cambriaz.ttf', name='Cambria', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HTOWERT.TTF', name='High Tower Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MOD20.TTF', name='Modern No. 20', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MSUIGHUR.TTF', name='Microsoft Uighur', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOS.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOOKOSB.TTF', name='Bookman Old Style', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\phagspa.ttf', name='Microsoft PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_I.TTF', name='Bodoni MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BELLB.TTF', name='Bell MT', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhbd.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\msjhl.ttc', name='Microsoft JhengHei', style='normal', variant='normal', weight=290, stretch='normal', size='scalable')) = 10.1545 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\verdanaz.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 4.971363636363637 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\DUBAI-BOLD.TTF', name='Dubai', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\seguihis.ttf', name='Segoe UI Historic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\HARLOWSI.TTF', name='Harlow Solid Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\GOUDYSTO.TTF', name='Goudy Stout', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothB.ttc', name='Yu Gothic', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ELEPHNT.TTF', name='Elephant', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\BOD_R.TTF', name='Bodoni MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\REFSAN.TTF', name='MS Reference Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\comicz.ttf', name='Comic Sans MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\YuGothR.ttc', name='Yu Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ANTQUAB.TTF', name='Book Antiqua', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\SNAP____.TTF', name='Snap ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\WINGDNG3.TTF', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\trebuc.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\LeelawUI.ttf', name='Leelawadee UI', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\Candarai.ttf', name='Candara', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\calibril.ttf', name='Calibri', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\segoeuil.ttf', name='Segoe UI', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\CALIFB.TTF', name='Californian FB', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\COPRGTB.TTF', name='Copperplate Gothic Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MAIAN.TTF', name='Maiandra GD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\FREESCPT.TTF', name='Freestyle Script', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\MISTRAL.TTF', name='Mistral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='C:\\Windows\\Fonts\\ITCKRIST.TTF', name='Kristen ITC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05 +DEBUG:matplotlib.font_manager:findfont: Matching sans\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to DejaVu Sans ('C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Continue\\Ela_back\\Back_Office\\venv\\Lib\\site-packages\\matplotlib\\mpl-data\\fonts\\ttf\\DejaVuSans.ttf') with score of 0.050000. +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n \n \n \n \n \n

 

\n

\n

 

\n

 

\n
BULLETIN DE NOTE
Entrée Scolaire: 2025/2026
Promotion : Licence L1 08/11/2025
\n\n\n\n\n\n\n\n\n

part nom 1   part 1
Né(e) le 30/07/2025
 
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

Note par matière / UE  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
Matière / UERangMoy. ElMoy. Ens.Observation
INITIATION A LA PROGRAMMATION57.511.41  
\n

 

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

\n

Note générale  

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
RangMoy. ElValidéObservation
57.50doit redoubler d\'effort
\n

 

\n

Imprimé le : 09/11/2025  

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Bulletin_Note_part nom 1_part 1_795.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 30% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 10% +DEBUG:xhtml2pdf.tables:Col 4 has width 40% +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: ['30%', '10%', '10%', '10%', '40%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col 0 has width 10% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 10% +DEBUG:xhtml2pdf.tables:Col 3 has width 70% +DEBUG:xhtml2pdf.tables:Col widths: ['10%', '10%', '10%', '70%'] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:53:17] "GET /myclass/api/Prepare_and_Send_Inscrit_Bulletin_Note_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3a70995b26cde9611a3b HTTP/1.1" 200 - +INFO:root:2025-11-09 10:54:17.294659 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:54:17.297659 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:54:17.301662 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:54:17.303660 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:54:17.308970 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:54:17.312968 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:54:17] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 10:54:17.320976 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:54:17.324978 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:54:17] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:54:17] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:54:17] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:54:17] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:54:17] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:54:17] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:54:17] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 10:54:19.095920 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:54:19.100447 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:54:19.104447 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:54:19] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:54:19] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:54:19] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 10:54:21.126165 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:54:21] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 10:55:40.765185 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:55:40.768189 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:55:40.772189 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:55:40.777189 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:55:40.782695 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:40] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 10:55:40.791698 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:40] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:40] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 10:55:40.802696 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:55:40.810695 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:40] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:40] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:40] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:40] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:40] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 10:55:47.069219 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:55:47.074227 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:55:47.077225 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:55:47.081223 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:47] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 10:55:47.086739 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:55:47.090746 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:55:47.098739 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:47] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:47] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 10:55:47.115739 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:47] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:47] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:47] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:47] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:55:47] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 10:56:04.844236 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:56:04.847239 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:56:04.853239 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:56:04.858238 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:56:04.862236 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:56:04.868239 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:56:04] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:56:04] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:56:04] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:56:04] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:56:04] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 10:56:04.887235 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 10:56:04.894730 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:56:04] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:56:04] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:56:04] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 10:56:55.025509 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:56:55] "POST /myclass/api/Update_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-09 10:56:55.096677 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 10:56:55] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:59:30.704535 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:59:30.704535 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:59:30.705551 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:59:30.705551 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:59:30.705551 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 10:59:59.603594 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 10:59:59.603594 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 10:59:59.603594 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 10:59:59.603594 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 10:59:59.603594 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:00:20.545744 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:00:20.545744 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:00:20.545744 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:00:20.545744 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:00:20.545744 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:01:11.693742 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:01:11.693742 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:01:11.693742 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:01:11.693742 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:01:11.693742 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:01:58.147491 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:01:58.147491 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:01:58.147491 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:01:58.147491 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:01:58.147491 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:03:33.705724 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:03:33.705724 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:03:33.705724 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:03:33.705724 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:03:33.705724 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 11:05:13.408511 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:13.409511 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:13.412512 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:13.418512 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:13.421511 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:13.425509 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:13] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:13] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:13] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:05:13.455508 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:13] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:05:13.462511 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:13] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:13] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:13] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:13] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:05:21.587530 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:21.590535 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:21.594534 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:21.600535 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:21] "POST /myclass/api/Get_Competence_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:21] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:05:21.609022 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:21] "POST /myclass/api/Get_List_Manager_Ressource_Humaine/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:05:21.614020 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:21.619525 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:21] "POST /myclass/api/Get_Competence_Level/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:21] "POST /myclass/api/Get_List_Profil_Ressource_Humaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:21] "POST /myclass/api/Get_Related_Target_Collection_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:21] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:05:23.488078 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:23] "POST /myclass/api/getRecoded_Employee_Image_from_front/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:05:24.302757 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:24.305756 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:24.310307 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:24.315308 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:24.321284 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:24.325285 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:24] "POST /myclass/api/Get_Given_Ressource_Humaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:24] "POST /myclass/api/Get_List_Manager_Ressource_Humaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:24] "POST /myclass/api/getRecoded_Employee_Image_from_front/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:05:24.342284 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:24.346271 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:24] "POST /myclass/api/Get_List_Profil_Ressource_Humaine/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:05:24.355287 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:24.358269 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:24] "POST /myclass/api/Get_List_Ressource_Humaine_Affectation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:24] "POST /myclass/api/Get_Related_Target_Collection_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:24] "POST /myclass/api/Get_List_Employee_Contrat/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:05:24.365269 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:24.370270 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:24] "POST /myclass/api/Get_Partner_Group_Purchase_Price_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:24] "POST /myclass/api/Get_List_Employee_Suivi_Pedagogique_No_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:24] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:24] "POST /myclass/api/Get_Matrix_Acces_Right/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:24] "POST /myclass/api/Get_List_Survey_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:05:26.040957 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:26.044958 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:05:26.046958 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:26] "POST /myclass/api/Get_User_Access_Scope/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:26] "POST /myclass/api/get_partner_class_Without_Scope_Action/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:05:26] "POST /myclass/api/GetAllValideSessionPartner_List_Without_Scope_Action/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:06:01.859332 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:06:01.863339 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:06:01.866338 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:06:01.871338 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:06:01.879848 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:01] "POST /myclass/api/Get_List_Manager_Ressource_Humaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:01] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:06:01.887850 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:01] "POST /myclass/api/Get_Competence_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:01] "POST /myclass/api/Get_Competence_Level/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:06:01.900849 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:01] "POST /myclass/api/Get_Related_Target_Collection_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:01] "POST /myclass/api/Get_List_Profil_Ressource_Humaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:01] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:06:59.619866 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:06:59.623868 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:06:59.630161 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:06:59.634200 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:06:59.640166 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:06:59.641164 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:59] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:59] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:59] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:06:59.662225 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:59] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:06:59.671225 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:59] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:59] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:59] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:06:59] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:07:30.109347 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:07:30.113852 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:07:30.116963 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:07:30.119857 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:07:30.128859 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:07:30.130861 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:07:30] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:07:30] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:07:30.143860 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:07:30.146861 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:07:30] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:07:30] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:07:30] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:07:30] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:07:30] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:07:30] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:08:40.502708 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:08:40.504712 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:08:40.509718 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:40] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:08:40.514717 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:08:40.525228 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:40] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:40] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:40] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:08:40.552095 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:08:40.555115 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:08:40.557098 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:08:40.562099 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:08:40.565098 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:08:40.571618 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:40] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:40] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:40] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:40] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:08:40.615212 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:40] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:08:40.629253 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:40] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:40] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:40] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:08:42.040143 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:08:42.044145 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:08:42.048179 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:42] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:42] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:42] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:08:43.764573 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:08:43] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:09:06.571332 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:09:06] "POST /myclass/api/Update_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:09:06.635985 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:09:06] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:12:34.506141 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:12:34.511150 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:12:34.515150 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:12:34.518152 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:12:34.525660 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:12:34] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:12:34.534221 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:12:34] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:12:34.548220 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:12:34] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:12:34] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:12:34.559266 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:12:34] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:12:34] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:12:34] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:12:34] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:12:40.609798 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:12:40.613875 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:12:40.617905 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:12:40] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:12:40] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:12:40] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:12:43.361080 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:12:43] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:15:24.896731 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 5   part nom 5

\n

\n

Vous êtes convoqué pour une évaluation de type : Examen.
L\'epreuve se déroulera du 11/11/2025 12:30 au 11/11/2025 15:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 09/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 5_96774.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +WARNING:xhtml2pdf.util:getSize: Not a float '90%' +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
CONVOCATION EVALUATION
\n

A l\'attention de part 4   part nom 4

\n

\n

Vous êtes convoqué pour une évaluation de type : Examen.
L\'epreuve se déroulera du 11/11/2025 12:30 au 11/11/2025 15:00 , à distance sur la plateforme du ELYOS. Vous recevrez le lien ultérieurement.

\n\n

 

\n
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
Cordialement
\n
Paris , 09/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Eval_Convocation_part nom 4_73063.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:15:25] "GET /myclass/api/Send_Evaluation_Convocation_Participant_By_PDF/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690f3bd5a00c978d63f0330a/690f3bf4995b26cde9611a59,690f3bf4995b26cde9611a5a/66dc4ddf75b3f60c3ea43084 HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:20:18.123871 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:20:18.124870 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:20:18.124870 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:20:18.124870 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:20:18.124870 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:31:30.370419 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:31:30.370419 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:31:30.370419 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:31:30.370419 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:31:30.370419 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:31:55.380013 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:31:55.380013 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:31:55.381013 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:31:55.381013 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:31:55.381013 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\main.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:34:17.549475 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:34:17.549475 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:34:17.550476 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:34:17.550476 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:34:17.550476 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 11:35:27.973801 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:35:27.980833 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:35:27.983867 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:35:27.989835 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:35:28.002872 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:35:28.014881 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:35:28] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:35:28] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:35:28] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:35:28] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:35:28.046591 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:35:28.052591 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:35:28] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:35:28] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:35:28] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:35:28] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:35:53.456530 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:35:53.459505 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:35:53.464504 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:35:53] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:35:53] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:35:53] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:35:55.165223 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:35:55] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:36:10.833419 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:36:13.079001 : Publish_Unpublish_Participant_Evaluation_Note Le champ 'tab_participant_note' n'est pas autorisé +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:36:13] "POST /myclass/api/Publish_Unpublish_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:36:57.150908 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:36:57.155886 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:36:57.160411 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:36:57.165409 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:36:57.171393 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:36:57] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:36:57.179414 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:36:57] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:36:57] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:36:57.190393 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:36:57.195392 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:36:57] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:36:57] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:36:57] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:36:57] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:36:57] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:37:04.264174 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:37:04.267828 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:37:04.271831 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:37:04] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:37:04] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:37:04] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:37:05.811152 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:37:05] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:37:11.337191 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:37:11.355204 : Publish_Unpublish_Participant_Evaluation_Note -'publish' - Line : 2114 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:37:11] "POST /myclass/api/Publish_Unpublish_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:37:49.123239 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:37:49.124240 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:37:49.124240 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:37:49.124240 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:37:49.124240 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 11:37:49.181400 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:37:49] "POST /myclass/api/Update_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:37:49.199384 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:37:49] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:38:46.352494 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:38:47.170298 : Publish_Unpublish_Participant_Evaluation_Note -update only works with $ operators - Line : 2124 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:38:47] "POST /myclass/api/Publish_Unpublish_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:41:17.544672 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:41:17.544672 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:41:17.545672 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:41:17.545672 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:41:17.545672 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 11:41:42.333628 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:41:42] "POST /myclass/api/Publish_Unpublish_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:41:42.402645 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:41:42] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:43:29.416769 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:43:29.421769 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:43:29.423770 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:43:29.430769 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:43:29.435768 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:43:29] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:43:29.440767 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:43:29.448817 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:43:29] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:43:29.458771 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:43:29] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:43:29] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:43:29] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:43:29] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:43:29] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:43:29] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:44:10.700551 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:44:10.704979 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:44:10.710806 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:44:10.715812 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:44:10] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:44:10] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:44:10] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:44:10.740341 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:44:10.743325 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:44:10.751421 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:44:10] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:44:10.760377 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:44:10] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:44:10] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:44:10] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:44:10] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:44:14.456357 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:44:14.458343 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:44:14.462353 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:44:14] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:44:14] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:44:14] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:44:16.339091 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:44:16] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:44:24.184641 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:44:24] "POST /myclass/api/Publish_Unpublish_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:44:24.298015 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:44:24] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:47:17.790489 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:47:17.790489 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:47:17.791489 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:47:17.791489 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:47:17.791489 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:48:01.949125 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:48:01.949125 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:48:01.949125 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:48:01.949125 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:48:01.949125 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 11:48:02.021837 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:48:02.023851 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:48:02.024873 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:02] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:02] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:02] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:48:04.821401 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:04] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:48:14.105091 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:14] "POST /myclass/api/Publish_Unpublish_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:48:14.217127 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:14] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:48:17.134616 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:48:17.137613 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:48:17.142119 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:17] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:17] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:17] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:48:19.491003 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:19] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:48:53.706145 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:48:53.709144 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:48:53.713130 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:48:53.719142 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:53] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:48:53.731127 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:48:53.738126 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:48:53.746142 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:53] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:48:53.760142 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:53] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:53] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:53] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:53] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:53] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:53] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:48:58.143294 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:48:58.145292 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:48:58.149293 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:58] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:58] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:58] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:48:59.494122 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:48:59] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:49:21.055314 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:49:21.058318 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:49:21.062317 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:49:21] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:49:21] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:49:21] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:49:27.039536 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:49:27] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:50:33.259488 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:50:33.259488 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:50:33.259488 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:50:33.259488 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:50:33.260489 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 11:50:33.525000 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:50:33.530002 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:50:33.534026 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:33] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:33] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:33] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:50:35.018081 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:35] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:50:44.008138 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:50:44.011140 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:50:44.016141 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:50:44.020154 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:50:44.023155 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:44] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:50:44.032141 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:50:44.037139 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:44] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:44] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:44] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:50:44.052159 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:44] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:44] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:44] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:44] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:50:45.399239 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:50:45.402237 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:50:45.406236 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:45] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:45] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:45] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:50:46.918073 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:50:46] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:51:18.524993 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:51:18.525992 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:51:18.525992 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:51:18.525992 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:51:18.525992 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 11:51:18.980419 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:18] "POST /myclass/api/Publish_Unpublish_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:51:19.079578 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:19] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:51:42.296209 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:51:42.297210 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:51:42.300202 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:51:42.303206 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:51:42.306755 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:51:42.311765 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:42] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:42] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:42] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:51:42.332269 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:42] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:51:42.337295 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:42] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:42] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:42] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:42] "POST /myclass/api/Get_List_Evaluation_Planification_No_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:51:44.087817 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:51:44.089883 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 11:51:44.094901 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:44] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:44] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:44] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:51:46.701877 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:46] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:51:55.081055 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:55] "POST /myclass/api/Publish_Unpublish_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-09 11:51:55.153582 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 11:51:55] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:54:54.232880 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:54:54.232880 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:54:54.232880 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:54:54.232880 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:54:54.232880 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:55:32.220297 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:55:32.220297 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:55:32.220297 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:55:32.220297 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:55:32.220297 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 11:58:29.398378 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 11:58:29.398378 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 11:58:29.398378 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 11:58:29.398378 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 11:58:29.398378 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 12:01:00.685249 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 12:01:00.686234 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 12:01:00.686234 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 12:01:00.686234 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 12:01:00.686234 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 12:01:27.795542 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 12:01:27.795542 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 12:01:27.795542 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 12:01:27.795542 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 12:01:27.795542 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 12:03:10.550659 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 12:03:10.550659 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 12:03:10.550659 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 12:03:10.550659 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 12:03:10.550659 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 12:04:57.663791 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 12:04:57.664797 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 12:04:57.664797 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 12:04:57.664797 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 12:04:57.664797 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 12:05:23.808105 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 12:05:23.808105 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 12:05:23.808105 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 12:05:23.808615 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 12:05:23.808615 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 12:05:46.068534 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 12:05:46.069534 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 12:05:46.069534 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 12:05:46.069534 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 12:05:46.069534 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\note_evaluation_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 12:06:51.391416 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 12:06:51.391416 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 12:06:51.391416 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 12:06:51.391416 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 12:06:51.391416 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 12:07:07.345470 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 12:07:07.346471 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 12:07:07.346471 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 12:07:07.346471 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 12:07:07.346471 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 12:07:07.418359 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:07.420347 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:07.421351 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:07.431342 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:07] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:07] "POST /myclass/api/getRecodedParnterImage_from_front/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:07] "POST /myclass/api/Get_List_Theme_Catalog_Pub/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:09.503327 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:09] "POST /myclass/api/Get_Partner_Catalog_Pub_Config/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:12.804019 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:12.808020 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:12.812021 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:12] "POST /myclass/api/Get_Partner_Data_From_Subdomain/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:12] "POST /myclass/api/get_all_class_Given_partner_owner_recid_No_Login/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:15.740927 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:15.752938 : Ajout Token OK, _id = 68f23fd115d6ff1cb9f4ec72 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:15] "POST /myclass/api/Ent_Student_login/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:16.846523 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:16.849522 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:16.852522 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:16.855522 : {'_id': ObjectId('6906220dd3d7adc37cb3fc93'), 'apprenant_id': '66432a8b41efccf7bb038fe4', 'type': 'student', 'email': 'mysy1000formation+02@gmail.com', 'partner_owner_recid': '43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89', 'active': '1', 'adr_city': '', 'adr_country': '', 'adr_street': '', 'civilite': 'neutre', 'code_postal': '', 'creation_by': '65f04934549224c14c3f6039', 'creation_date': '2025-11-01 16:06:53.957236', 'firstconnexion': '0', 'locked': '0', 'mob_phone': '023456789', 'nom': 'ccc', 'notification_send': '0', 'prenom': 'sss', 'pwd': 'Sdj3X7hCbFo', 'lastconnexion': '2025-11-09 12:07:15.752938', 'token': 'CPfyUN9MaoZ61z_nqNtWEAI2RUsQwG1LCw'} +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:16] "POST /myclass/api/get_user_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:16] "POST /myclass/api/Get_List_Ent_Alert_Message/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:16.893172 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:16] "POST /myclass/api/Get_Ent_Student_List_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:16] "POST /myclass/api/Get_Ent_Student_List_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.003340 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.005343 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.007854 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.008880 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.011865 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.014862 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.017858 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.023877 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.027862 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.031860 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.036872 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.040858 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.042855 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.046859 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.054855 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.056870 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.061858 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.069898 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.072885 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.073883 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.081882 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.086477 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.088455 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.092458 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.101475 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.103474 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.107454 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.119485 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.121474 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.128983 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.132990 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.137004 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.148004 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.150013 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.154018 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.164006 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.168993 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:17.172012 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:17.177996 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:17] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:25.803254 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:25.807263 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:25.810249 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:07:25.815255 : {'_id': ObjectId('6906220dd3d7adc37cb3fc93'), 'apprenant_id': '66432a8b41efccf7bb038fe4', 'type': 'student', 'email': 'mysy1000formation+02@gmail.com', 'partner_owner_recid': '43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89', 'active': '1', 'adr_city': '', 'adr_country': '', 'adr_street': '', 'civilite': 'neutre', 'code_postal': '', 'creation_by': '65f04934549224c14c3f6039', 'creation_date': '2025-11-01 16:06:53.957236', 'firstconnexion': '0', 'locked': '0', 'mob_phone': '023456789', 'nom': 'ccc', 'notification_send': '0', 'prenom': 'sss', 'pwd': 'Sdj3X7hCbFo', 'lastconnexion': '2025-11-09 12:07:15.752938', 'token': 'CPfyUN9MaoZ61z_nqNtWEAI2RUsQwG1LCw'} +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:25] "POST /myclass/api/get_user_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:25] "POST /myclass/api/Get_List_Ent_Alert_Message/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:25.846265 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:25] "POST /myclass/api/Get_Ent_Student_List_Session_Promotion/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:25] "POST /myclass/api/Get_Ent_Student_List_Session_Promotion/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:07:30.992989 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:07:31] "POST /myclass/api/Get_Ent_Student_Participant_Notes/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\ent_student_common.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 12:08:26.722471 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 12:08:26.722471 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 12:08:26.722471 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 12:08:26.722471 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 12:08:26.722471 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\ent_student_common.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 12:08:43.246195 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 12:08:43.246195 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 12:08:43.247195 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 12:08:43.247195 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 12:08:43.247195 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-09 12:08:54.380372 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:08:54] "POST /myclass/api/Get_Ent_Student_Participant_Notes/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:08:55.928928 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:08:55] "POST /myclass/api/Get_Ent_Student_Participant_Notes/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:09:29.361747 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:09:29.363729 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:09:29.367773 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:09:29] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:09:29] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:09:29] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:09:30.879548 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:09:30] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:07.001676 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:07.003675 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:07.007675 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:07] "POST /myclass/api/Get_Partner_Data_From_Subdomain/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:07] "POST /myclass/api/get_all_class_Given_partner_owner_recid_No_Login/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.310982 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.317992 : Ajout Token OK, _id = 68f23fd115d6ff1cb9f4ec72 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/Ent_Student_login/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.352530 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.355545 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.358533 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.368529 : {'_id': ObjectId('6906220dd3d7adc37cb3fc93'), 'apprenant_id': '66432a8b41efccf7bb038fe4', 'type': 'student', 'email': 'mysy1000formation+02@gmail.com', 'partner_owner_recid': '43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89', 'active': '1', 'adr_city': '', 'adr_country': '', 'adr_street': '', 'civilite': 'neutre', 'code_postal': '', 'creation_by': '65f04934549224c14c3f6039', 'creation_date': '2025-11-01 16:06:53.957236', 'firstconnexion': '0', 'locked': '0', 'mob_phone': '023456789', 'nom': 'ccc', 'notification_send': '0', 'prenom': 'sss', 'pwd': 'Sdj3X7hCbFo', 'lastconnexion': '2025-11-09 12:10:14.318993', 'token': 'GLD0E4yNiBHmby-nlXB9B3MnaWd84G_Z2A'} +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/get_user_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/Get_List_Ent_Alert_Message/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.393545 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/Get_Ent_Student_List_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/Get_Ent_Student_List_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.491118 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.494116 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.496118 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.500117 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.505135 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.508119 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.512117 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.517119 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.523119 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.526134 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.532118 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.541146 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.545145 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.549145 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.554721 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.556816 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.561799 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.570799 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.572815 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.575815 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.579798 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.581820 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.592815 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.595798 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.598799 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.602799 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.610798 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.615799 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.616821 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.622819 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.624820 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.628820 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.637871 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.644386 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.645452 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.655548 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.658572 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:14.661548 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:14.664564 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSessionFormation_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/getRecodedClassImage_no_token/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:14] "POST /myclass/api/GetActiveSession_Cities_And_Distance_Formation_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:36.318435 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:36] "POST /myclass/api/Publish_Unpublish_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:36.421614 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:36] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:46.768114 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:46.771137 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:46] "POST /myclass/api/get_Ent_Student_Given_Class_From_Class_Id/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:46.776112 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:46.780111 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:46.784113 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:46] "POST /myclass/api/Get_Ent_Student_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:46.795139 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:46] "POST /myclass/api/Get_Ent_Student_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:46] "POST /myclass/api/Get_Ent_Student_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:46] "POST /myclass/api/Get_Ent_Student_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:46] "POST /myclass/api/Get_Ent_Student_Participant_Notes/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:51.340525 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:51.342526 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:51.347525 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:10:51.353525 : {'_id': ObjectId('6906220dd3d7adc37cb3fc93'), 'apprenant_id': '66432a8b41efccf7bb038fe4', 'type': 'student', 'email': 'mysy1000formation+02@gmail.com', 'partner_owner_recid': '43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89', 'active': '1', 'adr_city': '', 'adr_country': '', 'adr_street': '', 'civilite': 'neutre', 'code_postal': '', 'creation_by': '65f04934549224c14c3f6039', 'creation_date': '2025-11-01 16:06:53.957236', 'firstconnexion': '0', 'locked': '0', 'mob_phone': '023456789', 'nom': 'ccc', 'notification_send': '0', 'prenom': 'sss', 'pwd': 'Sdj3X7hCbFo', 'lastconnexion': '2025-11-09 12:10:14.318993', 'token': 'GLD0E4yNiBHmby-nlXB9B3MnaWd84G_Z2A'} +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:51] "POST /myclass/api/get_user_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:51] "POST /myclass/api/Get_List_Ent_Alert_Message/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:51.407832 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:51] "POST /myclass/api/Get_Ent_Student_List_Session_Promotion/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:51] "POST /myclass/api/Get_Ent_Student_List_Session_Promotion/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:10:55.137033 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:10:55] "POST /myclass/api/Get_Ent_Student_Participant_Notes/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:11:06.087816 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:11:06.091865 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:11:06.092865 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:06] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:06] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:06] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:11:07.573200 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:07] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:11:19.393318 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:19] "POST /myclass/api/Publish_Unpublish_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:11:19.467864 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:19] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:11:26.807798 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:26] "POST /myclass/api/Get_Ent_Student_Participant_Notes/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:11:28.280240 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:28] "POST /myclass/api/Get_Ent_Student_Participant_Notes/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:11:37.968665 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:11:37.971620 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 12:11:37.975665 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:37] "POST /myclass/api/Get_Given_Evaluation_Planification/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:37] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:38] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:11:39.568773 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:39] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:11:50.351087 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:50] "POST /myclass/api/Publish_Unpublish_Participant_Evaluation_Note/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:11:50.454606 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:50] "POST /myclass/api/Get_List_Participant_To_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:11:57.906042 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:57] "POST /myclass/api/Get_Ent_Student_Participant_Notes/ HTTP/1.1" 200 - +INFO:root:2025-11-09 12:11:59.196778 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 12:11:59] "POST /myclass/api/Get_Ent_Student_Participant_Notes/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:07:42.156096 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:07:42.159095 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:07:42.163097 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:07:42.167096 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:42] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:07:42.174096 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:42] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:07:42.178101 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:42] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:07:42.184102 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:07:42.189104 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:42] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:07:42.197266 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:42] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:07:42.205273 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:42] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:42] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:07:42.218793 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:42] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:42] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:07:42.235784 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:42] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:42] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:43] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:07:46.804744 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:07:46.808731 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:07:46.813741 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:07:46.817747 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:07:46.826321 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:46] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:46] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:46] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:07:46.834298 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:07:46.841290 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:46] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:46] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:46] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:46] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:07:51.321589 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:07:51.322616 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:51] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:52] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:07:55.210502 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:07:55.213533 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:55] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:07:56] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:11:15.927089 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:11:15.931090 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:11:15.934088 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:11:15.938090 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:11:15] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:11:15.946600 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:11:15] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:11:15.954602 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:11:15] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:11:15] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:11:15] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:11:15.971601 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:11:15] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:11:15.976600 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:11:15.978600 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:11:15.985600 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:11:15] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:11:15.996607 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:11:16.001607 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:11:16] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:11:16] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:11:16] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:11:16] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:11:17] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:17:58.385695 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:17:58.390694 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:17:58.395695 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:17:58.399711 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:17:58] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:17:58] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:17:58.407695 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:17:58] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:17:58.411691 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:17:58] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:17:58.416695 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:17:58.422694 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:17:58.428211 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:17:58.439219 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:17:58] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:17:58] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:17:58] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:17:58.451230 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:17:58.456737 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:17:58] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:17:58] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:17:58] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:17:59] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:17:59] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:19:52.143816 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:19:52.147817 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:19:52.153816 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:19:52.158327 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:19:52] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:19:52] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:19:52.167332 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:19:52.169327 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:19:52] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:19:52] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:19:52.181328 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:19:52.186328 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:19:52.192328 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:19:52] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:19:52] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:19:52] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:19:52.205328 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:19:52.218328 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:19:52] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:19:52.226328 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:19:52] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:19:52] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:19:52] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:19:53] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:20:07.762201 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:07] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:20:07.905927 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:20:07.908474 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:20:07.912475 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:07] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:07] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:07] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:20:23.659289 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:20:23.665288 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:20:23.669282 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:20:23.673793 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:20:23.678325 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:23] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:20:23.691315 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:20:23.698315 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:23] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:23] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:23] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:20:23.706312 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:23] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:20:23.713320 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:23] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:23] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:20:23.719317 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:20:23.724315 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:20:23.728318 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:23] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:23] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:23] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:24] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:25] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:20:26.720613 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:20:26.725614 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:20:26.728612 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:20:26.732614 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:26] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:26] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:20:26.744615 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:26] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:20:26.751611 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:26] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:20:26.757615 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:26] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:26] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:26] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:20:28.408428 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:20:28.410407 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:28] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:20:29] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:24:59.545172 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:24:59.549166 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:24:59.552168 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:24:59] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:24:59.561687 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:24:59] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:24:59.573683 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:24:59] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:24:59] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:24:59.625883 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:24:59.627883 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:24:59.631884 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:24:59.638883 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:24:59] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:24:59.643887 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:24:59] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:24:59.648888 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:24:59.653926 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:24:59.657951 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:24:59] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:24:59] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:24:59] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:24:59] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:24:59.670935 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:24:59] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:24:59.675920 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:24:59.678923 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:24:59.682927 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:24:59] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:24:59] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:24:59] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:25:00] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:25:00] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:25:03.005620 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:25:03.009618 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:25:03.013591 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:25:03.020604 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:25:03] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:25:03.024587 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:25:03.029589 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:25:03] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:25:03] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:25:03.037587 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:25:03] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:25:03] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:25:03] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:25:03] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:25:06.642568 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:25:06.646553 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:25:06] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:25:07] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:26:25.748331 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:26:25.751333 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:26:25.754338 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:26:25.758335 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:26:25] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:26:25] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:26:25.766341 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:26:25.769368 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:26:25] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:26:25] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:26:25.777897 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:26:25.781898 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:26:25] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:26:25] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:26:25.793448 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:26:25] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:26:25.798458 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:26:25.803459 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:26:25.808457 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:26:25] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:26:25] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:26:25] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:26:26] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:26:27] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:27:18.377354 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:18.381356 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:18.386356 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:18.394354 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:18] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:27:18.399354 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:18.408355 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:18] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:18] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:18] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:27:18.423354 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:18.425378 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:18] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:27:18.434363 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:18] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:18] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:27:18.449424 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:18.452422 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:18.459940 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:18] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:18] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:18] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:20] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:21] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:27:45.086015 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:45.091015 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:45.098017 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:45.103017 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:45.112010 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:45] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:27:45.124019 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:45] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:45] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:27:45.134017 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:45.144290 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:45.148292 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:45] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:45] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:45] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:45] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:27:45.168812 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:45.170809 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:27:45.180853 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:45] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:45] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:45] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:45] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:27:46] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:04.335295 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:28:04.340712 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:28:04.345659 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:28:04.349221 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:04] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:04.373169 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:04] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:04.382797 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:28:04.395998 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:28:04.406584 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:04] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:04] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:04.423587 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:04] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:04.430584 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:04] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:04] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:04.450594 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:04] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:04.473648 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:04] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:04] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:05] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:06] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:53.507453 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:28:53.512526 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:28:53.518852 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:28:53.523917 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:53] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:53.538402 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:28:53.548064 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:53] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:53.561600 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:53] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:53.575628 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:53] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:53] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:53.599645 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:53] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:53] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:53.606630 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:28:53.614600 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:28:53.625704 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:53] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:53] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:53] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:55] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:57] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:58.083918 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:28:58.092440 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:58] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:58.102452 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:58] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:58.116437 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:58] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:58] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:58.139435 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:28:58.156456 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:58] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:28:58.179067 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:58] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:28:58] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:29:00.151292 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:29:00.159308 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:29:00] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:29:02] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:31:03.557448 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:31:03.559451 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:31:03.565458 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:31:03.569458 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:31:03.574459 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:31:03] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:31:03] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:31:03.582978 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:31:03.591978 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:31:03.595978 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:31:03] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:31:03] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:31:03] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:31:03] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:31:03.613492 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:31:03.618491 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:31:03] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:31:03.626491 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:31:03.638490 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:31:03] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:31:03] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:31:03] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:31:04] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:31:04] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:35:53.206506 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:53] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:35:53.217513 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:35:53.226502 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:35:53.234505 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:53] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:53] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:35:53.254507 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:53] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:35:53.274022 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:35:53.280025 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:53] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:35:53.289035 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:53] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:35:53.296032 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:35:53.300554 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:35:53.304557 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:53] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:35:53.310558 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:35:53.314078 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:53] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:35:53.322078 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:53] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:53] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:35:53.328081 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:35:53.331077 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:53] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:35:53.341075 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:53] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:53] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:53] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:54] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:35:54] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:36:01.970093 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:36:01.974120 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:36:01.977099 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:36:01.982102 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:36:01.985104 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:36:01.991606 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:36:01] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:36:01] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:36:01] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:36:02.001611 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:36:02] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:36:02] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:36:02] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:36:02] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:36:17.559296 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:36:17.562278 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:36:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:36:18] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:36:27.991140 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:36:28] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:36:28.134248 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:36:28.147247 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:36:28] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:36:28.154268 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:36:28] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:36:28] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:38:14.163509 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:38:14.167516 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:38:14.173515 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:38:14] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:38:14.183540 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:38:14.187540 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:38:14] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:38:14.195539 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:38:14.202540 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:38:14] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:38:14.208541 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:38:14] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:38:14] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:38:14.222543 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:38:14.225546 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:38:14] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:38:14] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:38:14.241057 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:38:14.247060 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:38:14] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:38:14] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:38:14] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:38:15] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:38:15] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:40:18.031519 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:40:18.187424 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:40:18] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:40:19.125170 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:40:19.271460 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:40:19] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:40:22] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:40:22] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:41:22.334965 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:22.337964 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:22.342964 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:22] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:22] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:41:22.354967 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:22.356966 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:22.361965 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:22] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:41:22.369966 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:22] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:41:22.380966 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:22] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:41:22.387967 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:22.395967 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:22.401967 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:22] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:22] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:41:22.409967 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:22] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:22] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:22] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:23] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:23] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:41:28.979978 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:28.982973 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:28.985972 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:28.989974 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:28.993975 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:28] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:41:28.999974 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:29.003975 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:29] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:29] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:29] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:29] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:29] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:29] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:41:30.993990 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:30.994988 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:31] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:31] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:41:51.308019 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:51.313024 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:51.316019 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:51.323569 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:51] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:51] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:41:51.328536 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:51.332535 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:51.337536 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:51] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:51] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:51] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:51] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:51] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:41:53.207708 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:41:53.210692 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:53] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:41:54] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:42:00.137979 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:42:00.141977 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:42:00.144976 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:42:00.148975 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:00] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:00] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:42:00.154976 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:42:00.158983 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:00] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:00] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:42:00.166982 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:00] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:00] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:42:01.954856 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:42:01.957875 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:01] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:02] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:42:17.418945 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:17] "POST /myclass/api/UpdateStagiairetoClass/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:42:17.646542 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:42:17.650421 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:42:17.652406 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:17] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:42:33.181998 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:33] "POST /myclass/api/Get_Personnalisable_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:42:33.189035 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:33] "POST /myclass/api/Get_List_Partner_Document_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:42:41.380318 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:41] "POST /myclass/api/Get_List_Partner_Document_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:42:43.441986 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:42:43.447031 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:43] "POST /myclass/api/Get_Given_Partner_Document/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:42:43] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:43:51.075412 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   09/11/2025 
\n

 

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_84 

Destinataire : msys boite


  -

\n
\n

Client : test01 prenom billardman01@hotmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
15/09/2025 - 17/09/2025
\n
 
\n      commmmmmmmmmmmmm - memoooooooo
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement : 0J  Conditions de paiement : Date Facture 

\n

Date échéance : 09/11/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Partner_Invoice_NEW_Invoice_84.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n\n\n\n\n\n\n\n
SASU JMJ FORMATION
BP 60540 97206 FORT DE FRANCE CEDEX
Email: jmjformation@gmail.com
Tel: 0596 97 58 46
\n

\n
\n\n

 

\n\n\n\n\n\n\n\n\n
  Date Facture   09/11/2025 
\n

 

\n\n\n\n\n\n\n\n
\n

Facture n° NEW_Invoice_84 

Destinataire : msys boite


  -

\n
\n

Client : test01 prenom billardman01@hotmail.com\n  

\n

Intitulé de la formation : CONDUIRE UN PROJET  

\n
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
DésignationQuantitéPrix unitaire HTTotal HT
\n
CONDUIRE UN PROJET
\n
15/09/2025 - 17/09/2025
\n
 
\n      commmmmmmmmmmmmm - memoooooooo
11500.0 €1500.0 €
\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Totaux
 Total HT1500.0 €
 TaxesPrestations de formation en exonération de TVA, article 261-4-4a du CGI
 Total1500.0 €
\n

 

\n

Condition de règlement : 0J  Conditions de paiement : Date Facture 

\n

Date échéance : 09/11/2025 

\n

 

\n

 

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 Code banque
16958
Code guichet
00001
N° de compte
04285131654
Clé RIB
46
Monnaie
EUR
 IBAN
FR76 1695 8000 0104 2851 3165 446
\n

BIC
QNTOFRP1XXX

\n
\n

 

\n

 

\n

JMJ FORMATION
Siége social : 15 Rue Georges Eucharis, Espace POSEIDON, Dillon Stade, 97200 Fort-de-France
Adresse Postale : BP 60540 97206 FORT DE FRANCE CEDEX
Siret : 799 674 064 00032 - Numéro de déclaration d’activité : 97 97 01982 97 – QUALIOPI : N° RNQ 3318
Tel : 06 96 50 23 33 / 0596 97 58 46/ Mail : jmjformation@gmail.com / Web : www.jmjformation.com  

' + dest = <_io.BufferedRandom name='./temp_direct/Invoice_Signe_09_11_2025_65.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 821 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col 0 has width 50% +DEBUG:xhtml2pdf.tables:Col 1 has width 10% +DEBUG:xhtml2pdf.tables:Col 2 has width 20% +DEBUG:xhtml2pdf.tables:Col 3 has width 20% +DEBUG:xhtml2pdf.tables:Col widths: ['50%', '10%', '20%', '20%'] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None, None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 821 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:43:52] "POST /myclass/api/Invoice_Inscrption_With_Split_Session_By_Inscription_Id/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:43:52.656783 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:43:53] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:45:56.199264 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:45:56.203205 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:45:56] "POST /myclass/api/Get_List_Partner_Invoice_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:45:57] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:45:58.056133 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:45:58.059134 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:45:58] "POST /myclass/api/Get_Given_Partner_Invoice/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:45:58] "POST /myclass/api/Get_Given_Partner_Invoice_Lines/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:46:00.136402 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:46:00] "GET /myclass/api/GerneratePDF_Partner_Invoice/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/69109a97719c7106adb90a99 HTTP/1.1" 200 - +INFO:root:2025-11-09 14:47:34.221876 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:47:34] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:56:24.835854 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:56:24] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/69109a98995b26cde9611abe HTTP/1.1" 200 - +INFO:root:2025-11-09 14:59:22.637736 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:59:22] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:59:22.648738 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:59:22.650739 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:59:22.656738 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 14:59:22.663746 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:59:22] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:59:22] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:59:22] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-09 14:59:22.757504 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 14:59:22] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:00:32.158717 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:00:32.159716 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:00:32.165717 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:00:32.170716 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:00:32] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:00:32.182780 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:00:32] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:00:32] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:00:32] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:00:32.216457 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:00:32] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:05:51.780266 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:05:51] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/68f15277d980c4ab7268ba8f HTTP/1.1" 200 - +INFO:root:2025-11-09 15:09:23.593134 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:09:23] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690df2ec995b26cde9611890 HTTP/1.1" 200 - +INFO:root:2025-11-09 15:17:26.088926 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:17:26] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:18:11.691591 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:18:11] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:21:42.372155 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:21:42] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:21:46.386166 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:21:46] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/69109a98995b26cde9611abe HTTP/1.1" 200 - +INFO:root:2025-11-09 15:22:42.777811 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:22:42] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:22:49.333938 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:22:49] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:22:52.422693 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:22:52] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/69109a98995b26cde9611abe HTTP/1.1" 304 - +INFO:root:2025-11-09 15:22:57.060515 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:22:57] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/68fe06e779119ff4d421aeed HTTP/1.1" 200 - +INFO:root:2025-11-09 15:23:59.553360 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:23:59.565366 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:23:59.570365 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:23:59] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:23:59.586880 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:23:59.601881 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:23:59] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:23:59] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:23:59] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:23:59.899197 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:24:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:24:07.988704 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:24:08] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:27:10.546389 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:27:10] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:27:15.254898 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:27:15] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/69109a98995b26cde9611abe HTTP/1.1" 304 - +INFO:root:2025-11-09 15:27:43.239813 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:27:43] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:27:50.700908 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:27:50.709911 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:27:50] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:27:50.724925 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:27:50.732929 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:27:50.734909 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:27:50] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:27:50] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:27:50] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:27:50.750926 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:27:50] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:28:05.826218 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:28:05] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:28:38.991906 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:28:39] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:29:17.433227 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:29:17] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:29:33.590850 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:29:33] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/69109a98995b26cde9611abe HTTP/1.1" 304 - +INFO:root:2025-11-09 15:29:54.685756 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:29:54] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:30:31.390008 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:30:31] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:30:34.734372 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:30:34] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/69109a98995b26cde9611abe HTTP/1.1" 304 - +INFO:root:2025-11-09 15:30:41.278093 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:30:41] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/68fe06e779119ff4d421aeed HTTP/1.1" 304 - +INFO:root:2025-11-09 15:30:45.214518 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:30:45] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/68fb8f5979119ff4d421aea0 HTTP/1.1" 200 - +INFO:root:2025-11-09 15:31:35.838590 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:31:35] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/690df2ec995b26cde9611890 HTTP/1.1" 200 - +INFO:root:2025-11-09 15:32:01.990880 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:32:02] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/68f4d22dd12201e20d8b6dac HTTP/1.1" 200 - +INFO:root:2025-11-09 15:32:29.558465 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:32:29] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:32:33.982793 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:32:34] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/68fe06e779119ff4d421aeec HTTP/1.1" 200 - +INFO:root:2025-11-09 15:33:01.457258 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:33:01] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:33:04.153157 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:33:04] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:33:14.413525 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:33:14] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/xQvCaXv9Jm4CdK7afh52CRBApicf7umogg/68c57c1f1dac169e77e4db7a HTTP/1.1" 200 - +INFO:root:2025-11-09 15:45:54.420260 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:45:54] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:48:51.270948 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:48:51.276948 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:48:51.281975 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:48:51.287950 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:48:51] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:48:51.299950 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:48:51.304948 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:48:51.322949 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:48:51] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:48:51] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:48:51] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:48:51.339947 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:48:51] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:48:51] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:48:51.353954 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:48:51.355954 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-09 15:48:51.363469 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:48:51] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:48:51] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:48:51.374468 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:48:51] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:48:51] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:48:52] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:48:52] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-09 15:48:56.276568 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [09/Nov/2025 15:48:56] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 15:51:00.676713 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 15:51:00.676713 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 15:51:00.676713 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 15:51:00.676713 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 15:51:00.676713 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-09 15:52:44.662698 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-09 15:52:44.663700 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-09 15:52:44.663700 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-09 15:52:44.663700 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-09 15:52:44.663700 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 08:35:59.128064 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 08:35:59.129068 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 08:35:59.129068 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 08:35:59.129068 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 08:35:59.129068 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 08:36:11.804136 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 08:36:11.804136 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 08:36:11.804136 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 08:36:11.804136 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 08:36:11.804136 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 08:36:58.253733 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 08:36:58.253733 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 08:36:58.253733 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 08:36:58.253733 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 08:36:58.253733 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 08:49:11.989405 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 08:49:11.989405 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 08:49:11.989405 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 08:49:11.989405 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 08:49:11.990400 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 08:49:37.864298 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 08:49:37.864298 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 08:49:37.865319 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 08:49:37.865319 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 08:49:37.865319 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-10 08:49:38.316923 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:49:38] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:49:44.395982 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:49:44.405924 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:49:44.416486 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:49:44.419482 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:49:44.439479 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:49:44] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:49:44.485758 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:49:44] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:49:44] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:49:44] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:49:44] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:49:45.035302 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:49:45.050081 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:49:45] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:49:45.061199 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:49:45.071605 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:49:45.078658 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:49:45] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:49:45.090422 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:49:45] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:49:45] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:49:45] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:49:45] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:17.408788 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:50:17.413473 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:50:17.417822 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:50:17.421931 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:17.427715 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:17] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:17.433306 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:17] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:17.442217 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:50:17.448923 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:17] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:17.457932 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:17] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:17.462923 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:17] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:17.468926 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:17] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:17.475946 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:17] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:17] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:17] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:18] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:19] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:21.965610 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:50:21.969595 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:50:21.975869 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:50:21.979866 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:50:21.987867 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:21] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:21] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:21.996874 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:21] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:22.007972 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:22] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:22] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:22] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:22] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:25.055281 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:50:25.060213 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:25] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:26] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:46.044072 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:50:46.047089 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:46] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:46] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:51.405213 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
\n
\n
\n

A l\'attention  neutre   part 2 part nom 2  

Situé :adresse02    code_postal02   ville02    pays02

\n
\n
\n
\n
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : Christian XXXX
Signataire dûment habilité aux fins des présentes : Emmanuelle XXXXXX
Contact :  contact@elyos-si.org
Téléphone : 01 XX XX XX XX 
\n
à le plaisir de vous convier à la formation ci-dessous :
Formation :   CONDUIRE UN PROJET
Durée :  15.0 heure (s)
Lieu de formation :   adr site1  , cp site 1 - vile sit1 
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
\n
Les séquences de formation  :
\n
Du    10/11/2025 10:00  au 10/11/2025 12:30
\n
Du    12/11/2025 09:00  au 12/11/2025 17:30
\n
Du    13/11/2025 09:30  au 13/11/2025 13:00
\n
Du    13/11/2025 09:30  au 13/11/2025 13:00
\n
Du    17/11/2025 09:00  au 17/11/2025 17:30
\n
Du    20/11/2025 09:00  au 20/11/2025 17:30
\n
Du    21/11/2025 09:00  au 21/11/2025 17:30
\n
\n
Au plaisir de vous retrouver prochainement,
\n
10/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Convocation_43598_03662.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:51] "GET /myclass/api/Prepare_and_Send_Convocation_From_Session_For_Selected_Inscrit_By_PDF/AetKl4vNLkYTl7xsmMfQtyjcyO_DjfMCzg/68fb8e6a0438bff16569753c/6847efb6adbfa1041e0cf34b/68fb8ede79119ff4d421ae9b HTTP/1.1" 200 - +INFO:root:2025-11-10 08:50:51.913213 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:50:52] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:11.497495 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:53:11.500760 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:53:11.504767 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:11] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:11.513814 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:53:11.522470 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:11] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:11] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:11] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:11.601469 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:53:11.605485 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:53:11.609475 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:53:11.614480 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:11] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:11.620129 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:53:11.626353 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:11] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:11] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:11] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:11.637348 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:11] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:11.640346 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:53:11.646378 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:11] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:11.652376 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:53:11.657381 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:53:11.661383 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:11] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:11] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:11] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:11] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:12] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:13] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:16.353318 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:16] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:25.693463 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:25] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:41.851006 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:53:41.855618 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:41] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:41] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:45.215897 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
\n
\n
\n

A l\'attention  neutre   part 2 part nom 2  

Situé :adresse02    code_postal02   ville02    pays02

\n
\n
\n
\n
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : Christian XXXX
Signataire dûment habilité aux fins des présentes : Emmanuelle XXXXXX
Contact :  contact@elyos-si.org
Téléphone : 01 XX XX XX XX 
\n
à le plaisir de vous convier à la formation ci-dessous :
Formation :   CONDUIRE UN PROJET
Durée :  15.0 heure (s)
Lieu de formation :   adr site1  , cp site 1 - vile sit1 
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
\n
Les séquences de formation  :
\n
Du    10/11/2025 10:00  au 10/11/2025 12:30
\n
Du    12/11/2025 09:00  au 12/11/2025 17:30
\n
Du    13/11/2025 09:30  au 13/11/2025 13:00
\n
Du    13/11/2025 09:30  au 13/11/2025 13:00
\n
Du    17/11/2025 09:00  au 17/11/2025 17:30
\n
Du    20/11/2025 09:00  au 20/11/2025 17:30
\n
Du    21/11/2025 09:00  au 21/11/2025 17:30
\n
\n
Au plaisir de vous retrouver prochainement,
\n
10/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Convocation_43598_05559.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:48] "POST /myclass/api/Prepare_and_Send_Convocation_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:48.783561 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:48] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:54.928158 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:53:54.947063 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:54] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:54.973343 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-10 08:53:54.999066 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:55] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:55] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:55.045456 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:55] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:53:55.049460 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:53:55] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-10 08:54:07.292761 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 08:54:07] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\jury_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 08:55:29.461563 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 08:55:29.461563 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 08:55:29.461563 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 08:55:29.461563 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 08:55:29.461563 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 08:58:27.840941 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 08:58:27.841936 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 08:58:27.841936 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 08:58:27.841936 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 08:58:27.841936 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 08:59:42.207230 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 08:59:42.207230 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 08:59:42.207230 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 08:59:42.207230 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 08:59:42.207230 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 09:00:09.997033 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 09:00:09.997033 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 09:00:09.997033 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 09:00:09.997033 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 09:00:09.997033 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 09:00:56.058065 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 09:00:56.058065 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 09:00:56.058065 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 09:00:56.058065 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 09:00:56.058065 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 09:01:23.795678 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 09:01:23.795678 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 09:01:23.795678 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 09:01:23.796678 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 09:01:23.796678 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 09:01:40.108773 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 09:01:40.108773 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 09:01:40.108773 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 09:01:40.108773 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 09:01:40.108773 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 09:02:15.993586 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 09:02:15.993586 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 09:02:15.993586 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 09:02:15.993586 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 09:02:15.993586 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 09:02:41.094112 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 09:02:41.094112 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 09:02:41.094112 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 09:02:41.094112 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 09:02:41.094112 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 09:03:12.239489 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 09:03:12.239489 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 09:03:12.240487 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 09:03:12.240487 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 09:03:12.240487 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 15:40:31.360821 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 15:40:31.360821 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 15:40:31.360821 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 15:40:31.361632 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 15:40:31.361632 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 15:40:42.166018 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 15:40:42.167019 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 15:40:42.167019 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 15:40:42.167019 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 15:40:42.167019 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-10 15:43:06.346386 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-10 15:43:06.347385 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-10 15:43:06.347385 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-10 15:43:06.348430 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-10 15:43:06.348430 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-10 15:43:08.003348 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 15:43:08] "GET /myclass/api/ManualSendInvoiceEmailRIB_CIC_BureauVallee HTTP/1.1" 308 - +INFO:root:2025-11-10 15:43:08.052452 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n\n\n\n\t
\n\t\tMysy Training Logo \n\t
\n\t\n\t\t
\n\t\t\t
\n\t\t\t\t\n\t\t\t\t
\n\t\t\t\t\n\t\t\t\t\tBVD Fr (Bureau Vallée)
\n\t\t\t\t\t25 rue du Gros Caillou
\n\t\t\t\t\t78340 – Les Clayes-sous-Bois- France
\n\n\t\t\t\t
\n\n\n\t\t\t\t\n\n\t\t\t\t\tFacture n° FACT_20251020\n\n\n\t\t\t\t
\n\n\n\n\t\t\t\t\n\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t
Date de facture: 31/10/2025 Date échéance : 15/11/2025
\n\n\t\t\t\t\n\t\t\t\t\tPériode : 01/10/2025 au 31/10/2025 \n\t\t\t\t\n\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t
DescriptionQuantitéPrix unitaire (HT)Montant (HT)
Prestation de service
\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t
23 jours550 € HT12 650 € HT
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\n\t\t\t\t\t\t\t\n\n\n\t\t\t\t\t\t\n\n\t\t\t\t\t
Déplacement Bureau - PapetShow -\n\t\t\t\t\t\t\t\t15/10/2025 et 16/10/2025
\n\t\t\t\t\t\t\t\tDeplacement bureau <=> papet show (Aller / retour) : 16,8 km X 2 X 2 jrs = 67,2 Km\n\t\t\t\t\t\t\t\t\t(https://www.impots.gouv.fr/simulateur-bareme-kilometrique) 47 € TTC
 
Déplacement Bureau - Magasin Paris 5 -\n\t\t\t\t\t\t\t\t8/10/2025
\n\t\t\t\t\t\t\t\tDeplacement bureau <=> Magasin Paris 5 (Aller / retour) : 37,6 km X 2 = 75,2 Km\n\t\t\t\t\t\t\t\t\t(https://www.impots.gouv.fr/simulateur-bareme-kilometrique) 52 € TTC
\n\t\t\t\t\n\n\n\t\t\t\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t
    Montant HT: 12 749   €
    TVA : 2 548,8   €
    Montant TTC : 15 298,8  €
\n\n\t\t\t
\n\n\t\t\t\n\t\t\t\tRèglement : Virement bancaire \n\n\n\t\t\t

\n\t\t\t\t> Relevé d\'identité bancaire : MySy Training Technology, 2 place des magnolias, 77680, Roissy en\n\t\t\t\t\tbrie \n\t\t\t

\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\n\n\n\t\t\t\t\n\n\t\t\t
BanqueCode agenceNuméro de compteClé RIB
30087338560002128550340
\n\n\t\t\t

\n\t\t\t\t> Identification internationale\n\t\t\t

\n\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\n\n\n\n\t\t\t\t\n\n\t\t\t
IBANCode BIC
FR76 3008 7338 5600 0212 8550 340CMCIFRPP
\n\n\t\t\n\n\t\n\n\t
\n\t\n\n\t\tTermes et conditions
\n\n\t\tPas d\'escompte accordé pour paiement anticipé.
\n\t\tEn cas de non-paiement à la date d\'échéance, des pénalités calculées à trois fois le taux d\'intérêt légal\n\t\tseront appliquées.
\n\t\tTout retard de paiement entraînera une indemnité forfaitaire pour frais de recouvrement de 40€.
\n\n\t\n\n\n\t
\n\t\t\n\n\t\t\tMySy Training
\n\n\t\t\tMySy Training Technology (MTT), société par actions simplifiée au capital de 10 000 euros, dont le siège\n\t\t\tsocial est\n\t\t\tsitué 2, place des magnolias, 77680, Roissy en Brie, immatriculée au Registre du Commerce et des\n\t\t\tSociétés sous le numéro 917 500 860 R.C.S. Melun\n\n\t\t\n\t
\n\n\n' + dest = <_io.BufferedRandom name='./Invoices/invoice_FACT_20251020.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject './../img/MYSY-LOGO-BLUE.png', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.files:URLParts: ParseResult(scheme='c', netloc='', path='\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__', params='', query='', fragment=''), 'c' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': 75.0, 'height': None, 'align': None, 'id': None} +DEBUG:xhtml2pdf.files:Unrecognized scheme, assuming local file path +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 25 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 6645 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 25 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 6645 +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 15:43:09] "GET /myclass/api/ManualSendInvoiceEmailRIB_CIC_BureauVallee/ HTTP/1.1" 200 - +INFO:root:2025-11-10 15:44:24.840166 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 15:44:24] "GET /myclass/api/ManualSendInvoiceEmailRIB_CIC_BureauVallee HTTP/1.1" 308 - +INFO:root:2025-11-10 15:44:24.846096 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n\n\n\n\t
\n\t\tMysy Training Logo \n\t
\n\t\n\t\t
\n\t\t\t
\n\t\t\t\t\n\t\t\t\t
\n\t\t\t\t\n\t\t\t\t\tBVD Fr (Bureau Vallée)
\n\t\t\t\t\t25 rue du Gros Caillou
\n\t\t\t\t\t78340 – Les Clayes-sous-Bois- France
\n\n\t\t\t\t
\n\n\n\t\t\t\t\n\n\t\t\t\t\tFacture n° FACT_20251020\n\n\n\t\t\t\t
\n\n\n\n\t\t\t\t\n\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t
Date de facture: 31/10/2025 Date échéance : 15/11/2025
\n\n\t\t\t\t\n\t\t\t\t\tPériode : 01/10/2025 au 31/10/2025 \n\t\t\t\t\n\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t
DescriptionQuantitéPrix unitaire (HT)Montant (HT)
Prestation de service
\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t
23 jours550 € HT12 650 € HT
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\n\t\t\t\t\t\t\t\n\n\n\t\t\t\t\t\t\n\n\t\t\t\t\t
Déplacement Bureau - PapetShow -\n\t\t\t\t\t\t\t\t15/10/2025 et 16/10/2025
\n\t\t\t\t\t\t\t\tDeplacement bureau <=> papet show (Aller / retour) : 16,8 km X 2 X 2 jrs = 67,2 Km\n\t\t\t\t\t\t\t\t\t(https://www.impots.gouv.fr/simulateur-bareme-kilometrique) 47 € HT
 
Déplacement Bureau - Magasin Paris 5 -\n\t\t\t\t\t\t\t\t8/10/2025
\n\t\t\t\t\t\t\t\tDeplacement bureau <=> Magasin Paris 5 (Aller / retour) : 37,6 km X 2 = 75,2 Km\n\t\t\t\t\t\t\t\t\t(https://www.impots.gouv.fr/simulateur-bareme-kilometrique) 52 € HT
\n\t\t\t\t\n\n\n\t\t\t\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t
    Montant HT: 12 749   €
    TVA : 2 548,8   €
    Montant TTC : 15 298,8  €
\n\n\t\t\t
\n\n\t\t\t\n\t\t\t\tRèglement : Virement bancaire \n\n\n\t\t\t

\n\t\t\t\t> Relevé d\'identité bancaire : MySy Training Technology, 2 place des magnolias, 77680, Roissy en\n\t\t\t\t\tbrie \n\t\t\t

\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\n\n\n\t\t\t\t\n\n\t\t\t
BanqueCode agenceNuméro de compteClé RIB
30087338560002128550340
\n\n\t\t\t

\n\t\t\t\t> Identification internationale\n\t\t\t

\n\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\n\n\n\n\t\t\t\t\n\n\t\t\t
IBANCode BIC
FR76 3008 7338 5600 0212 8550 340CMCIFRPP
\n\n\t\t\n\n\t\n\n\t
\n\t\n\n\t\tTermes et conditions
\n\n\t\tPas d\'escompte accordé pour paiement anticipé.
\n\t\tEn cas de non-paiement à la date d\'échéance, des pénalités calculées à trois fois le taux d\'intérêt légal\n\t\tseront appliquées.
\n\t\tTout retard de paiement entraînera une indemnité forfaitaire pour frais de recouvrement de 40€.
\n\n\t\n\n\n\t
\n\t\t\n\n\t\t\tMySy Training
\n\n\t\t\tMySy Training Technology (MTT), société par actions simplifiée au capital de 10 000 euros, dont le siège\n\t\t\tsocial est\n\t\t\tsitué 2, place des magnolias, 77680, Roissy en Brie, immatriculée au Registre du Commerce et des\n\t\t\tSociétés sous le numéro 917 500 860 R.C.S. Melun\n\n\t\t\n\t
\n\n\n' + dest = <_io.BufferedRandom name='./Invoices/invoice_FACT_20251020.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject './../img/MYSY-LOGO-BLUE.png', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.files:URLParts: ParseResult(scheme='c', netloc='', path='\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__', params='', query='', fragment=''), 'c' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': 75.0, 'height': None, 'align': None, 'id': None} +DEBUG:xhtml2pdf.files:Unrecognized scheme, assuming local file path +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 25 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 6645 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 25 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 6645 +INFO:werkzeug:127.0.0.1 - - [10/Nov/2025 15:44:25] "GET /myclass/api/ManualSendInvoiceEmailRIB_CIC_BureauVallee/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\main.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 09:36:31.805035 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 09:36:31.805035 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 09:36:31.806046 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 09:36:31.806046 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 09:36:31.806046 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 09:38:51.980842 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:38:52] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:38:52.796098 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:38:52.799098 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:38:52.804098 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:38:52.808099 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:38:52.817098 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:38:52] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:38:52.851097 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:38:52] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:38:52.855097 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:38:52] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:38:52.857097 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:38:52] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:38:52.865096 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:38:52] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:38:52.874102 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:38:52] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:38:52] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:38:52.884620 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:38:52.893621 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:38:52] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:38:52] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:38:52] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:38:52] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:39:13.499405 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:39:13.501405 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:39:13.503407 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:39:13.508961 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:39:13.518975 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:13] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:13] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:39:13.524976 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:13] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:39:13.532993 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:13] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:13] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:39:13.543975 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:13] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:39:13.548980 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:39:13.555977 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:13] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:39:13.563992 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:39:13.568974 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:13] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:13] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:13] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:14] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:15] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:39:16.009197 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:39:16.013706 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:39:16.017713 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:39:16.024720 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:16] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:16] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:39:16.034720 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:16] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:39:16.042720 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:16] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:39:16.049718 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:16] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:16] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:16] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:39:17.873538 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:39:17.877538 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:19] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:39:30.471685 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:39:30.475691 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:30] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:30] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:39:32.489757 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
\n
\n
\n

A l\'attention  neutre   part 2 part nom 2  

Situé :adresse02    code_postal02   ville02    pays02

\n
\n
\n
\n
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : Christian XXXX
Signataire dûment habilité aux fins des présentes : Emmanuelle XXXXXX
Contact :  contact@elyos-si.org
Téléphone : 01 XX XX XX XX 
\n
à le plaisir de vous convier à la formation ci-dessous :
Formation :   CONDUIRE UN PROJET
Durée :  15.0 heure (s)
Lieu de formation :   adr site1  , cp site 1 - vile sit1 
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
\n
Les séquences de formation  :
\n
Du    10/11/2025 10:00  au 10/11/2025 12:30
\n
Du    12/11/2025 09:00  au 12/11/2025 17:30
\n
Du    13/11/2025 09:30  au 13/11/2025 13:00
\n
Du    13/11/2025 09:30  au 13/11/2025 13:00
\n
Du    17/11/2025 09:00  au 17/11/2025 17:30
\n
Du    20/11/2025 09:00  au 20/11/2025 17:30
\n
Du    21/11/2025 09:00  au 21/11/2025 17:30
\n
\n
Au plaisir de vous retrouver prochainement,
\n
11/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Convocation_43598_74385.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:root:2025-11-11 09:39:39.969575 : Internal_Usage_Store_User_Downloaded_File Le champ 'tab_related_collection' n'existe pas +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:40] "POST /myclass/api/Prepare_and_Send_Convocation_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:39:40.006559 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:39:40] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 09:40:20.111932 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 09:40:20.112934 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 09:40:20.112934 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 09:40:20.112934 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 09:40:20.112934 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 09:41:22.116044 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 09:41:22.116044 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 09:41:22.116044 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 09:41:22.116044 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 09:41:22.116044 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 09:44:27.762260 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 09:44:27.762260 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 09:44:27.762260 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 09:44:27.762260 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 09:44:27.762260 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 09:44:47.867704 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:44:47.870701 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:44:47] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:44:47] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:44:50.494231 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
\n
\n
\n

A l\'attention  neutre   part 2 part nom 2  

Situé :adresse02    code_postal02   ville02    pays02

\n
\n
\n
\n
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : Christian XXXX
Signataire dûment habilité aux fins des présentes : Emmanuelle XXXXXX
Contact :  contact@elyos-si.org
Téléphone : 01 XX XX XX XX 
\n
à le plaisir de vous convier à la formation ci-dessous :
Formation :   CONDUIRE UN PROJET
Durée :  15.0 heure (s)
Lieu de formation :   adr site1  , cp site 1 - vile sit1 
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
\n
Les séquences de formation  :
\n
Du    10/11/2025 10:00  au 10/11/2025 12:30
\n
Du    12/11/2025 09:00  au 12/11/2025 17:30
\n
Du    13/11/2025 09:30  au 13/11/2025 13:00
\n
Du    13/11/2025 09:30  au 13/11/2025 13:00
\n
Du    17/11/2025 09:00  au 17/11/2025 17:30
\n
Du    20/11/2025 09:00  au 20/11/2025 17:30
\n
Du    21/11/2025 09:00  au 21/11/2025 17:30
\n
\n
Au plaisir de vous retrouver prochainement,
\n
11/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Convocation_43598_50259.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:44:51] "POST /myclass/api/Prepare_and_Send_Convocation_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:44:51.531029 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:44:51] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:47:20.837525 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:47:20.838547 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:47:20.842524 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:20] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:47:20.851039 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:47:20.858040 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:20] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:20] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:20] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:47:20.910039 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:47:20.912080 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:47:20.914040 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:47:20.917038 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:47:20.921039 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:20] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:20] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:47:20.929044 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:47:20.931071 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:20] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:20] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:47:20.946554 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:20] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:47:20.951585 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:20] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:47:20.959624 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:47:20.963585 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:20] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:47:20.977586 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:20] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:21] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:21] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:21] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:22] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:47:28.965232 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:47:30.333412 : Get_List_object_owner_collection_Stored_Files_With_Filter -list indices must be integers or slices, not str - ERRORRRR AT Line : 1441 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:47:30] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 09:48:37.120490 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 09:48:37.121493 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 09:48:37.121493 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 09:48:37.121493 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 09:48:37.121493 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 09:48:42.589642 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:48:42.593642 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:48:42.594643 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:48:42.599644 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:48:42.600643 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:48:42.606670 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:48:42.611682 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:48:42.615644 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:48:42] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:48:42.625647 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:48:42] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:48:42] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:48:42.640200 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:48:42] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:48:42] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:48:42] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:48:42.650201 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:48:42] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:48:42.659269 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:48:42] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:48:42] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:48:42] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:48:43] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:48:43] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:48:48.070433 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:48:49.938848 : Get_List_object_owner_collection_Stored_Files_With_Filter -list indices must be integers or slices, not str - ERRORRRR AT Line : 1413 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:48:49] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 09:49:13.129511 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 09:49:13.129511 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 09:49:13.130528 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 09:49:13.130528 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 09:49:13.130528 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 09:49:18.220204 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:49:18.223204 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:49:18.226731 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:49:18.231714 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:49:18.237810 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:49:18.239835 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:49:18.246809 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:49:18] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:49:18.254852 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:49:18] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:49:18.269830 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:49:18] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:49:18] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:49:18] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:49:18] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:49:18] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:49:18.282832 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:49:18.293830 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:49:18.302831 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:49:18] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:49:18] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:49:18] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:49:18] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:49:19] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:49:22.249357 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:49:22] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:52:49.777777 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:52:49] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:53:07.407572 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:53:07.409575 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:53:07.413575 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:53:07.417577 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:53:07.419576 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:53:07] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:53:07.429091 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:53:07.426091 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:53:07] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:53:07.438147 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:53:07] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:53:07.445095 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:53:07] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:53:07.455158 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:53:07] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:53:07] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:53:07] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:53:07.469374 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:53:07.474419 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:53:07] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:53:07] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:53:07] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:53:08] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:53:08] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:53:14.628805 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:53:14] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 09:55:55.588573 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 09:55:55.589580 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 09:55:55.589580 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 09:55:55.589580 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 09:55:55.589580 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 09:56:58.708332 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 09:56:58.708332 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 09:56:58.708332 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 09:56:58.708332 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 09:56:58.708332 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 09:57:59.508536 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 09:57:59.508536 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 09:57:59.508536 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 09:57:59.509550 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 09:57:59.509550 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 09:58:01.218621 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:58:01.222184 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:58:01] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:58:01] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:58:03.940575 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
\n
\n
\n

A l\'attention  neutre   part 12 part nom 12  

Situé :adresse12    code_postal12   ville12    pays12

\n
\n
\n
\n
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : Christian XXXX
Signataire dûment habilité aux fins des présentes : Emmanuelle XXXXXX
Contact :  contact@elyos-si.org
Téléphone : 01 XX XX XX XX 
\n
à le plaisir de vous convier à la formation ci-dessous :
Formation :   CONDUIRE UN PROJET
Durée :  15.0 heure (s)
Lieu de formation :   adr site1  , cp site 1 - vile sit1 
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
\n
Les séquences de formation  :
\n
Du    10/11/2025 10:00  au 10/11/2025 12:30
\n
Du    12/11/2025 09:00  au 12/11/2025 17:30
\n
Du    13/11/2025 09:30  au 13/11/2025 13:00
\n
Du    13/11/2025 09:30  au 13/11/2025 13:00
\n
Du    17/11/2025 09:00  au 17/11/2025 17:30
\n
Du    20/11/2025 09:00  au 20/11/2025 17:30
\n
Du    21/11/2025 09:00  au 21/11/2025 17:30
\n
\n
Au plaisir de vous retrouver prochainement,
\n
11/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Convocation_43598_13071.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:58:04] "POST /myclass/api/Prepare_and_Send_Convocation_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:58:04.954321 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:58:05] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 09:59:40.796815 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 09:59:40.796815 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 09:59:40.796815 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 09:59:40.796815 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 09:59:40.796815 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 09:59:40.856117 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:59:40.858117 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:59:40.859626 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:59:40.860647 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:59:40.863649 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:59:40.866209 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:59:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:59:40.869208 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:59:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:59:40.872209 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:59:40] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:59:40] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:59:40.877195 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:59:40] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:59:40] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:59:40] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:59:40.881710 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:59:40.881710 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 09:59:40.882710 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:59:40] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:59:40] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:59:40] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:59:41] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:59:41] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 09:59:46.348656 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 09:59:46] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:00:26.056116 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:00:26.056116 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:00:26.056116 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:00:26.056116 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:00:26.056116 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:00:40.159260 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:00:40.159260 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:00:40.159260 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:00:40.159260 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:00:40.159260 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 10:00:43.953465 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:00:43.956466 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:00:43.960467 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:00:43.963468 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:00:43.966474 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:00:43.971474 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:00:43.978475 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:00:43] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:00:43.982985 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:00:43.986987 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:00:43] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:00:43] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:00:44] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:00:44.008987 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:00:44] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:00:44] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:00:44.029503 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:00:44] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:00:44.032504 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:00:44] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:00:44] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:00:44] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:00:44] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:00:45] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:01:10.518609 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:01:10] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:05:19.744427 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:05:19.744427 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:05:19.744427 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:05:19.744427 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:05:19.744427 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:06:04.253573 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:06:04.253573 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:06:04.254573 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:06:04.254573 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:06:04.254573 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:06:23.734681 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:06:23.734681 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:06:23.734681 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:06:23.735681 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:06:23.735681 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:06:54.351575 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:06:54.352893 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:06:54.352893 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:06:54.352893 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:06:54.352893 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:07:10.641593 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:07:10.641593 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:07:10.641593 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:07:10.641593 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:07:10.641593 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:07:24.597334 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:07:24.597334 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:07:24.597334 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:07:24.597334 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:07:24.597334 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:07:50.717262 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:07:50.717262 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:07:50.717262 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:07:50.717262 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:07:50.717262 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:08:09.234291 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:08:09.235291 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:08:09.235291 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:08:09.235291 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:08:09.235291 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 10:09:16.024888 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:09:16] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:09:36.164183 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:09:36.167210 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:09:36.169184 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:09:36.172183 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:09:36.175190 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:09:36] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:09:36.183190 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:09:36.187190 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:09:36] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:09:36.194730 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:09:36] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:09:36.201254 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:09:36.208769 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:09:36] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:09:36] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:09:36] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:09:36.219281 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:09:36] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:09:36.224286 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:09:36] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:09:36] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:09:36] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:09:36] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:09:36] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:09:38.643109 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:09:38] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:10:43.198123 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:10:43.199122 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:10:43.202123 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:10:43.206123 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:10:43.211124 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:10:43] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:10:43] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:10:43.218130 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:10:43] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:10:43] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:10:43] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:10:43.236642 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:10:43.230641 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:10:43] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:10:43.244642 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:10:43] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:10:43.252761 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:10:43] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:10:43.264647 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:10:43.272647 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:10:43] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:10:43] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:10:43] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:10:44] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:10:51.004067 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:10:51] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:12:10.685151 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:12:10] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:12:57.593336 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:12:57.597343 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:12:57.600336 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:12:57.605334 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:12:57.611372 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:12:57] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:12:57] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:12:57.618346 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:12:57] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:12:57.623343 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:12:57] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:12:57] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:12:57] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:12:57] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:12:59.393703 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:12:59.396693 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:12:59] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:13:00] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:13:14.682277 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:13:14.690277 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:13:14] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:13:14] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:13:22.604841 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
\n
\n
\n

A l\'attention  neutre   part 3 part nom 3  

Situé :adresse03    code_postal03   ville03    pays03

\n
\n
\n
\n
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : Christian XXXX
Signataire dûment habilité aux fins des présentes : Emmanuelle XXXXXX
Contact :  contact@elyos-si.org
Téléphone : 01 XX XX XX XX 
\n
à le plaisir de vous convier à la formation ci-dessous :
Formation :   CONDUIRE UN PROJET
Durée :  15.0 heure (s)
Lieu de formation :   adr site1  , cp site 1 - vile sit1 
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
\n
Les séquences de formation  :
\n
Du    03/12/2025 10:00  au 03/12/2025 12:30
\n
Du    05/12/2025 09:00  au 05/12/2025 17:30
\n
Du    10/12/2025 09:00  au 10/12/2025 17:30
\n
Du    15/12/2025 09:00  au 15/12/2025 17:30
\n
Du    16/12/2025 09:00  au 16/12/2025 17:30
\n
\n
Au plaisir de vous retrouver prochainement,
\n
11/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Convocation_43598_88987.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:13:23] "POST /myclass/api/Prepare_and_Send_Convocation_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:13:23.486505 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:13:23] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:13:55.990154 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:13:55.990154 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:13:55.990154 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:13:55.990154 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:13:55.990154 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 10:16:24.893050 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:16:24.898015 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:16:24.903014 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:24] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:16:24.912014 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:24] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:24] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:16:24.933014 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:24] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:16:24.950528 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:25] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:16:25.320791 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:25] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:16:25.660454 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:25] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:16:30.963863 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:16:30.967373 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:16:30.971394 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:16:30.975373 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:30] "POST /myclass/api/Get_Competence_Domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:30] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:16:30.984374 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:16:30.996405 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:30] "POST /myclass/api/Get_List_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:16:30.992374 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:31] "POST /myclass/api/Get_List_Groupe_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:16:31.005376 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:16:31.009375 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:16:31.014375 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:31] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:16:31.017376 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:31] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:31] "POST /myclass/api/Get_Competence_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:31] "POST /myclass/api/Get_List_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:31] "POST /myclass/api/Get_CRM_List_Opportunite_Etape/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:31] "POST /myclass/api/Get_List_base_document_automatic_setup/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:31] "POST /myclass/api/Get_List_Partner_Basic_Setup/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:16:32.825622 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:16:32] "POST /myclass/api/Get_List_Message_To_Mail_Queue/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:22:35.418529 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:22:35.418529 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:22:35.418529 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:22:35.418529 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:22:35.418529 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:22:48.707335 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:22:48.707335 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:22:48.708334 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:22:48.708334 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:22:48.708334 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 10:22:48.895212 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:48.900358 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:48.905362 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:48.910363 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:48] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:22:48.918378 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:48.922902 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:48.935303 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:48.941298 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:48] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:48] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:48] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:22:48.952886 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:48.956903 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:48] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:22:48.971160 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:48] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:48] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:48] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:22:48.980150 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:48.982147 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:48.984161 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:48.995150 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:48] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:49] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:49] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:22:49.008167 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:49.009167 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:49] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:49] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:49] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:49] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:50] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:22:57.546514 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:57.551523 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:57.554523 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:57.560525 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:22:57.563525 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:57] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:22:57.571524 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:57] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:22:57.580524 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:57] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:57] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:57] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:57] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:22:57] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:23:00.039543 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:23:00.043574 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:00] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:00] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:23:05.594422 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:23:05.597327 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:05] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:05] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:23:09.360426 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
\n
\n
\n

A l\'attention  neutre   part 3 part nom 3  

Situé :adresse03    code_postal03   ville03    pays03

\n
\n
\n
\n
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : Christian XXXX
Signataire dûment habilité aux fins des présentes : Emmanuelle XXXXXX
Contact :  contact@elyos-si.org
Téléphone : 01 XX XX XX XX 
\n
à le plaisir de vous convier à la formation ci-dessous :
Formation :   CONDUIRE UN PROJET
Durée :  15.0 heure (s)
Lieu de formation :   adr site1  , cp site 1 - vile sit1 
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
\n
Les séquences de formation  :
\n
Du    03/12/2025 10:00  au 03/12/2025 12:30
\n
Du    05/12/2025 09:00  au 05/12/2025 17:30
\n
Du    10/12/2025 09:00  au 10/12/2025 17:30
\n
Du    15/12/2025 09:00  au 15/12/2025 17:30
\n
Du    16/12/2025 09:00  au 16/12/2025 17:30
\n
\n
Au plaisir de vous retrouver prochainement,
\n
11/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Convocation_43598_37732.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:10] "POST /myclass/api/Prepare_and_Send_Convocation_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:23:10.284570 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:10] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:23:30.571376 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:23:30.597269 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:30] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:23:30.625073 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:23:30.649162 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:30] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:30] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:23:30.687156 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:23:30.720828 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:30] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:30] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:23:30.743914 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:23:30.766949 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:30] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:23:30.796841 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:30] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:23:30.832563 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:30] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:23:30.894021 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:30] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:23:30.950556 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:35] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:38] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:23:39.465363 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:23:41] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:26:49.347366 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:26:49.347366 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:26:49.348383 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:26:49.348383 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:26:49.348383 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:27:06.202239 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:27:06.203245 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:27:06.203245 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:27:06.203245 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:27:06.203245 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 10:27:37.029071 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:37.032072 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:37.034114 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:37.039076 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:37.044078 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:37.049627 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:37] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:37] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:27:37.060587 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:37] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:37] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:37] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:37] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:27:37.077603 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:37.079587 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:37.085587 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:37] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:27:37.091589 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:37.093587 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:37] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:37] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:37] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:37] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:27:37.821184 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:37] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:38] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:27:46.110982 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:46.114986 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:46] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:46] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:27:49.227545 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
\n
\n
\n

A l\'attention  neutre   part 3 part nom 3  

Situé :adresse03    code_postal03   ville03    pays03

\n
\n
\n
\n
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : Christian XXXX
Signataire dûment habilité aux fins des présentes : Emmanuelle XXXXXX
Contact :  contact@elyos-si.org
Téléphone : 01 XX XX XX XX 
\n
à le plaisir de vous convier à la formation ci-dessous :
Formation :   CONDUIRE UN PROJET
Durée :  15.0 heure (s)
Lieu de formation :   adr site1  , cp site 1 - vile sit1 
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
\n
Les séquences de formation  :
\n
Du    03/12/2025 10:00  au 03/12/2025 12:30
\n
Du    05/12/2025 09:00  au 05/12/2025 17:30
\n
Du    10/12/2025 09:00  au 10/12/2025 17:30
\n
Du    15/12/2025 09:00  au 15/12/2025 17:30
\n
Du    16/12/2025 09:00  au 16/12/2025 17:30
\n
\n
Au plaisir de vous retrouver prochainement,
\n
11/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Convocation_43598_11617.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:50] "POST /myclass/api/Prepare_and_Send_Convocation_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:27:50.151429 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:50] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:27:52.611314 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:52.613315 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:52.615315 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:52.619316 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:52] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:52] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:27:52.630332 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:52.634323 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:52] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:52] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:27:52.641322 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:52] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:27:52.646711 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:52.651711 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:52] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:27:52.656709 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:52] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:27:52.662711 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:27:52.670755 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:52] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:52] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:52] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:53] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:53] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:27:55.423381 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:27:55] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 10:28:51.814063 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 10:28:51.816062 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 10:28:51.816062 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 10:28:51.816062 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 10:28:51.816062 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 10:28:52.374981 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:28:52.377984 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:28:53] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/69130196995b26cde9611ac4 HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:28:53] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/69130196995b26cde9611ac4 HTTP/1.1" 200 - +INFO:root:2025-11-11 10:29:21.644620 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:21] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:29:21.720615 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:29:21.726630 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:29:21.739143 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:21] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:21] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:29:21.751663 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:21] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:29:21.760661 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:29:21.769667 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:21] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:21] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:21] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:29:52.420092 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:29:52.423693 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:29:52.426727 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:52] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:29:52.435942 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:52] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:29:52.438459 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:29:52.444097 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:29:52.450207 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:52] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:52] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:29:52.458841 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:29:52.465821 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:29:52.471997 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:52] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:52] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:29:52.480644 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:29:52.483725 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:52] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:52] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:52] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:52] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:53] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:29:53] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:30:40.864922 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:30:40.871025 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:30:40.877923 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:30:40.882923 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:30:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:30:40.895923 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:30:40] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:30:40.898924 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:30:40] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:30:40] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:30:40.917546 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:30:40.918673 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:30:40] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:30:40.927684 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:30:40.930679 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:30:40] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:30:40.947186 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:30:40] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:30:40.956189 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:30:40.963192 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:30:40] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:30:40] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:30:40] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:30:41] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:30:41] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:30:42] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:34:23.849427 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:34:23] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:37:10.786807 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:37:10] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:45:38.973255 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:45:38.976240 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:45:38.981239 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:45:38] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:45:38.988255 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:45:39.002243 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:45:39] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:45:39] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:45:39] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:45:39.040840 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:45:39] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:45:45.097688 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:45:45.100687 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:45:45.102690 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:45:45] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:45:45.109689 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:45:45.115687 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:45:45] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:45:45] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:45:45] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:45:45.144239 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:45:45] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:48:15.536039 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:48:15.539040 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:48:15.543038 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:48:15] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:48:15.550043 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:48:15] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:48:15] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:48:15.565556 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:48:15] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:48:15.581629 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:48:15] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:48:21.853675 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:48:21.856676 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:48:21.859680 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:48:21] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:48:21.866685 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:48:21.872685 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:48:21] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:48:21] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:48:21] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:48:21.895659 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:48:21] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:49:38.467907 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:49:38] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:51:01.215937 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:51:01] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:52:22.044988 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:52:22] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:52:25.773440 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:52:25] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:52:30.742395 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:52:30.743395 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:52:30.746393 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:52:30.750396 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:52:30] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:52:30.761393 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:52:30] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:52:30] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:52:30] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:52:30.791396 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:52:30] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:53:24.195569 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:53:24] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:53:29.440867 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:53:29.442868 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:53:29.446382 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:53:29] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:53:29.450388 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:53:29.463381 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:53:29] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:53:29] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:53:29] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:53:29.489919 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:53:29] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:53:56.299636 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:53:56] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:54:54.955174 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:54:55] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:54:59.935302 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:54:59] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:54:59.946304 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:54:59.953303 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:54:59.959302 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:54:59.966310 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:54:59] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:54:59] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:54:59] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:54:59.984833 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:55:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:55:17.802125 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:55:17.806123 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:55:17] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:55:17.817123 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:55:17.824157 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:55:17] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:55:17.827124 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:55:17] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:55:17] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:55:17.852648 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:55:17] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:56:47.369282 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:56:47] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:57:01.631927 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:57:01.634927 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:57:01.636927 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:57:01] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:57:01.642927 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:57:01.652929 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:57:01] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:57:01] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:57:01] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:57:01.676989 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:57:01] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:57:38.697829 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:57:38] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:57:51.545801 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:57:51.547799 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:57:51.550799 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:57:51] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:57:51.558799 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:57:51.564800 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:57:51] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:57:51] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:57:51] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:57:51.594723 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:57:51] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:58:34.668911 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:58:34] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:59:01.743702 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:59:01.749741 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:59:01] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:59:01.763704 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:59:01.766703 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:59:01.771709 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:59:01] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:59:01] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:59:01] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:59:01.793256 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:59:01] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:59:08.585882 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:59:08.586881 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:59:08.590882 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 10:59:08.595883 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:59:08] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:59:08.609361 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:59:08] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:59:08] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:59:08] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-11 10:59:08.631893 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 10:59:08] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 11:04:36.811173 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 11:04:36.811173 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 11:04:36.811173 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 11:04:36.811173 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 11:04:36.811173 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 11:04:47.871553 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 11:04:47.871553 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 11:04:47.871553 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 11:04:47.871553 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 11:04:47.871553 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 11:05:18.014842 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 11:05:18.014842 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 11:05:18.014842 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 11:05:18.014842 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 11:05:18.014842 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 11:06:00.080151 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 11:06:00.080151 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 11:06:00.080151 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 11:06:00.080151 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 11:06:00.080151 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 11:06:10.385823 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 11:06:10.385823 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 11:06:10.385823 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 11:06:10.385823 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 11:06:10.385823 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 11:06:18.599523 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 11:06:18.601526 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 11:06:18.604524 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 11:06:18.607524 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:06:18] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:06:18.624037 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:06:18] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:06:18] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:06:18] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:06:18.649057 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:06:18] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:06:31.389429 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:06:31] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/69130196995b26cde9611ac4 HTTP/1.1" 200 - +INFO:root:2025-11-11 11:06:35.018095 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 11:06:37.022111 : Get_Stored_Downloaded_File_From_Id -'' is not a valid ObjectId, it must be a 12-byte input or a 24-character hex string - ERRORRRR AT Line : 583 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:06:37] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/undefined HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 11:08:15.610544 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 11:08:15.610544 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 11:08:15.611543 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 11:08:15.611543 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 11:08:15.611543 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 11:10:51.879357 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:10:51] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:10:57.696088 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 11:10:57.699087 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:10:57] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:10:57.706097 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 11:10:57.708093 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:10:57] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:10:57] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:10:57.724815 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:10:57] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:10:57.750324 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:10:57] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:11:57.024089 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:11:57] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:12:19.615304 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:12:19] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:12:31.819149 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:12:31] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/69109a98995b26cde9611abe HTTP/1.1" 200 - +INFO:root:2025-11-11 11:12:34.914111 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 11:12:36.541888 : Get_Stored_Downloaded_File_From_Id L'identifiant du fichier est invalide +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:12:36] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/undefined HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 11:13:10.027008 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 11:13:10.027008 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 11:13:10.027008 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 11:13:10.027008 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 11:13:10.027008 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 11:13:10.404382 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:13:10] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/69109a98995b26cde9611abe HTTP/1.1" 304 - +INFO:root:2025-11-11 11:13:28.262451 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:13:28] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/69109a98995b26cde9611abe HTTP/1.1" 200 - +INFO:root:2025-11-11 11:13:34.643620 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:13:34] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/69109a98995b26cde9611abe HTTP/1.1" 304 - +INFO:root:2025-11-11 11:15:43.525506 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:15:43] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:19:30.610409 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:19:30] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:23:32.802845 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 11:23:32.808850 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 11:23:32.810854 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 11:23:32.813858 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:23:32] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:23:32] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:23:32] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:23:32.851899 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:23:32] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:23:32.870902 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:23:32] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:28:27.417625 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:28:27] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:30:18.934135 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:30:19] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:30:29.001591 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 11:30:29.007598 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:30:29] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:30:29.020142 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 11:30:29.028171 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 11:30:29.033157 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:30:29] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:30:29] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:30:29] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:30:29.051172 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:30:29] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 11:30:41.956242 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 11:30:41] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/69109a98995b26cde9611abe HTTP/1.1" 304 - +INFO:root:2025-11-11 14:28:06.036555 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:28:06] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:29:55.937104 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:29:56] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:32:26.647782 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:32:26.647782 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:32:26.647782 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:32:26.647782 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:32:26.647782 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:34:14.591624 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:34:14.591624 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:34:14.591624 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:34:14.591624 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:34:14.591624 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:35:24.938556 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:35:24.938556 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:35:24.938556 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:35:24.940059 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:35:24.940059 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:36:01.350293 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:36:01.350293 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:36:01.350293 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:36:01.350293 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:36:01.350293 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:38:57.167301 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:38:57.167301 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:38:57.167301 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:38:57.167301 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:38:57.167301 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:39:29.924858 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:39:29.924858 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:39:29.924858 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:39:29.924858 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:39:29.924858 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:39:49.421874 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:39:49.421874 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:39:49.421874 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:39:49.421874 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:39:49.421874 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:43:28.354218 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:43:28.354218 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:43:28.354218 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:43:28.354218 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:43:28.354218 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:43:35.453231 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:43:35.453231 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:43:35.453231 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:43:35.453231 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:43:35.453231 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:44:31.117725 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:44:31.117725 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:44:31.117725 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:44:31.117725 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:44:31.117725 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:48:35.045577 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:48:35.045577 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:48:35.045577 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:48:35.045577 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:48:35.045577 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:48:42.019479 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:48:42.019479 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:48:42.019479 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:48:42.019479 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:48:42.019479 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:49:42.372269 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:49:42.372269 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:49:42.372269 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:49:42.373268 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:49:42.373268 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 14:49:55.186748 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:49:55] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:50:02.579311 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 14:50:02.582334 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 14:50:02.586311 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:50:02] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:50:02.593311 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:50:02] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:50:02.608312 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:50:02] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:50:02] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:50:02.631339 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:50:02] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:50:18.353496 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:50:18] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\main.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:51:06.729316 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:51:06.729316 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:51:06.729316 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:51:06.729316 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:51:06.729316 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 14:51:06.834811 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:51:07] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:51:44.721145 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:51:44.721145 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:51:44.721145 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:51:44.721145 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:51:44.721145 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 14:51:47.929930 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:51:48] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:53:01.412713 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:53:01.413714 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:53:01.413714 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:53:01.413714 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:53:01.413714 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:54:24.812376 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:54:24.812376 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:54:24.812376 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:54:24.812376 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:54:24.812376 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 14:54:31.840292 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:54:31] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:55:05.351012 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:55:05.351012 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:55:05.352014 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:55:05.352014 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:55:05.352014 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 14:55:06.968739 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:55:07] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:55:26.876933 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:55:26] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:56:09.474057 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:56:09.474057 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:56:09.474057 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:56:09.474057 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:56:09.474057 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 14:56:40.560191 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:56:40] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:56:49.408264 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:56:49] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:57:12.178772 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:57:12.178772 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:57:12.179772 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:57:12.179772 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:57:12.179772 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 14:57:12.257066 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:57:12] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 14:57:52.236771 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 14:57:52.237771 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 14:57:52.237771 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 14:57:52.237771 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 14:57:52.237771 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 14:57:55.934053 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:57:55] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:57:57.968970 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:57:58] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:58:09.374832 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:58:09] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:58:22.556994 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:58:22] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:58:36.182081 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:58:36] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:58:43.585796 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:58:43] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:58:49.210235 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:58:49] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 14:59:22.702867 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 14:59:22] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:02:10.813424 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:02:10.814419 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:02:10.814419 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:02:10.814419 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:02:10.814419 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:02:39.880050 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:02:39.881049 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:02:39.881049 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:02:39.881049 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:02:39.881049 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:02:50.042816 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:02:50.042816 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:02:50.042816 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:02:50.042816 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:02:50.042816 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 15:02:54.201611 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:02:54] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:03:07.802514 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:03:07] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:03:24.124746 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:03:24] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:03:56.304219 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:03:56] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:05:15.911207 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:05:15.911207 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:05:15.911207 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:05:15.911207 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:05:15.911207 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:06:02.004653 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:06:02.005655 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:06:02.005655 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:06:02.005655 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:06:02.005655 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:06:11.973306 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:06:11.973306 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:06:11.973306 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:06:11.973306 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:06:11.973306 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:06:57.492108 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:06:57.493106 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:06:57.493106 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:06:57.493106 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:06:57.493106 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 15:07:11.257786 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:07:11] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:07:56.403638 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:07:56.404621 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:07:56.405717 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:07:56.405717 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:07:56.405717 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:09:17.562760 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:09:17.562760 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:09:17.562760 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:09:17.562760 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:09:17.562760 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:09:24.213969 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:09:24.213969 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:09:24.213969 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:09:24.213969 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:09:24.213969 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:09:38.163983 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:09:38.163983 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:09:38.163983 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:09:38.163983 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:09:38.163983 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 15:09:49.144526 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:09:49] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:09:56.589972 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:09:56] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:10:04.381511 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:10:04] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:10:40.005360 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:10:40] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:11:25.550457 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:11:25.550457 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:11:25.550457 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:11:25.550457 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:11:25.550457 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:11:53.840369 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:11:53.840369 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:11:53.840369 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:11:53.840369 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:11:53.840369 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 15:12:00.324464 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:12:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:13:18.518434 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:13:18.518434 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:13:18.518434 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:13:18.518434 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:13:18.518434 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 15:13:24.425625 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:13:25.700892 : Get_List_object_owner_collection_Stored_Files_With_Filter -'filter_class_external_code' - ERRORRRR AT Line : 1357 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:13:25] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:13:45.799275 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:13:45.799275 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:13:45.799275 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:13:45.799275 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:13:45.799275 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 15:13:47.321775 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:13:47] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:14:27.711089 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:14:27.711089 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:14:27.711089 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:14:27.711089 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:14:27.711089 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 15:14:27.902661 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:14:27] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:14:32.459285 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:14:32] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:14:35.734492 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:14:35] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:15:14.589895 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:15:14.589895 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:15:14.589895 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:15:14.589895 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:15:14.589895 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 15:15:14.650300 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:15:14.652299 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:15:14.653298 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:15:14] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:15:14] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:15:14] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:15:19.077339 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:15:19] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:15:24.213233 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:15:24] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:15:35.596383 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:15:35] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/6912fa9c995b26cde9611ac1 HTTP/1.1" 200 - +INFO:root:2025-11-11 15:15:37.725212 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:15:37] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/6912f783995b26cde9611ac0 HTTP/1.1" 200 - +INFO:root:2025-11-11 15:15:54.719353 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:15:54] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:16:06.599479 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:16:06] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:16:08.593102 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:16:08] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:16:12.142175 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:16:12] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:18:57.197859 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:18:57] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:21.016849 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:21] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:39.526381 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:39.527380 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:39.531888 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:39.533888 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:39] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:39.538888 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:39.543391 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:39] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:39] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:39] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:39.547396 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:39] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:39.560629 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:39.563669 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:39] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:39.573628 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:39.582629 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:39.587629 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:39] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:39] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:39] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:39] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:39] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:40] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:41.974705 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:41.976704 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:41.979706 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:41.983707 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:41] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:41] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:41.990720 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:41] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:41.995707 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:41.998733 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:42] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:42] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:42.009743 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:42] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:42.013724 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:42.019705 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:42] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:42.022707 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:42.028734 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:42] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:42] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:42] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:42] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:43] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:49.951671 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:50] "POST /myclass/api/GetAllValideSessionPartner_List_filter_like/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:52.597514 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:52.601513 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:52.605517 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:52.610512 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:52.616545 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:52] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:52.621512 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:52] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:52.626512 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:52] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:52] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:52] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:52] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:52] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:19:57.190073 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:19:57.194040 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:57] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:19:57] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:20:10.773904 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:20:10] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:34:12.237107 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:34:12] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:34:12.324424 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:34:12] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:34:16.355134 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n
\n
\n
\n

N° de déclaration d\'activité :  NDA-001254 

\n
\n
\n
\n
\n
 Est conclue la convention suivante entre
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes : prenom nonn 
Contact :   
Téléphone :  
\n

Et

\n
Et le bénéciaire :
 qsdsq qsdqs 
(Ci-aprés nommé le client)
Situé :     

\n
\n
\n

PRÉAMBULE
EZUS Lyon   Colas Rail filiale de Valorisation de l\'Université Claude Bernard Lyon I, s\'est vue confier la gestion des activités industrielles et commerciales des centres et services de l\'UCBL, ainsi que les actions de formation continue par la convention cadre signée le 23 janvier 2008.

\n

A cet effet, la société Colas Rail  fait appel au : Docteur Eric J. VOIGLIO, MD, PhD, FACS, FRCS Directeur ATLS France.

\n

Est conclu un contrat de formation professionnelle en application de l\'article L6353-3 du Code du Travail.

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation

\n

 Colas Rail 

\nFormation : CONDUIRE UN PROJET 
Durée : 15.0   heure (s) 
Lieu de formation :   vile sit1 
Dates de formation :  17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 
\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.

\n

Article 4 : Prix de la formation
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire :  1500.0 €

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation prenom   nonn 

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n

 

\n
\n

 

\n
\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_51252.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:34:19] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:34:19.785050 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:34:20] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:36:32.405212 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:36:32.405212 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:36:32.405212 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:36:32.405212 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:36:32.405212 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Session_Formation.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:37:05.473855 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:37:05.473855 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:37:05.473855 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:37:05.473855 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:37:05.473855 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 15:37:51.642218 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:37:51] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:37:58.729242 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:37:58.730243 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:37:58.736242 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:37:58.740242 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:37:58.746242 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:37:58] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:37:58] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:37:58] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:37:58] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:37:58.782384 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:37:58] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:38:06.422014 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:38:06] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:39:00.622050 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:39:00.625051 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:39:00] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:39:00] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:39:15.962443 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n
\n
\n
\n

N° de déclaration d\'activité :  NDA-001254 

\n
\n
\n
\n
\n
 Est conclue la convention suivante entre
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes : prenom nonn 
Contact :   
Téléphone :  
\n

Et

\n
Et le bénéciaire :
 qsdsq qsdqs 
(Ci-aprés nommé le client)
Situé :     

\n
\n
\n

PRÉAMBULE
EZUS Lyon   Colas Rail filiale de Valorisation de l\'Université Claude Bernard Lyon I, s\'est vue confier la gestion des activités industrielles et commerciales des centres et services de l\'UCBL, ainsi que les actions de formation continue par la convention cadre signée le 23 janvier 2008.

\n

A cet effet, la société Colas Rail  fait appel au : Docteur Eric J. VOIGLIO, MD, PhD, FACS, FRCS Directeur ATLS France.

\n

Est conclu un contrat de formation professionnelle en application de l\'article L6353-3 du Code du Travail.

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation

\n

 Colas Rail 

\nFormation : CONDUIRE UN PROJET 
Durée : 15.0   heure (s) 
Lieu de formation :   vile sit1 
Dates de formation :  17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 
\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.

\n

Article 4 : Prix de la formation
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire :  1500.0 €

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation prenom   nonn 

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n

 

\n
\n

 

\n
\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_03017.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:39:17] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:39:17.348009 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:39:17] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:43:04.131958 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:43:04.131958 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:43:04.131958 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:43:04.132963 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:43:04.132963 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:43:29.465036 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:43:29.465036 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:43:29.465036 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:43:29.465036 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:43:29.465036 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:45:34.195159 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:45:34.195159 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:45:34.195159 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:45:34.196160 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:45:34.196160 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:47:10.470485 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:47:10.470485 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:47:10.470485 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:47:10.470485 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:47:10.470485 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:48:01.469093 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:48:01.469093 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:48:01.469093 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:48:01.469093 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:48:01.469093 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:52:39.416262 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:52:39.416262 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:52:39.417263 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:52:39.417263 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:52:39.417263 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:52:53.936222 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:52:53.936222 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:52:53.936222 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:52:53.936222 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:52:53.936222 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 15:53:03.807638 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:53:03.811637 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:53:03] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:53:03] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:53:12.083504 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_17318.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:53:13] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:53:13.390286 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:53:13] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:53:51.770826 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:53:51] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:53:52.719059 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:53:52] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:53:57.813369 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:53:57] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/69134dd9995b26cde9611ac5 HTTP/1.1" 200 - +INFO:root:2025-11-11 15:54:02.964851 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:54:02] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/69134dd9995b26cde9611ac5 HTTP/1.1" 304 - +INFO:root:2025-11-11 15:54:18.071375 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:54:18] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:54:22.797306 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:54:22] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:56:01.724357 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:56:01.725356 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:56:01.725356 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:56:01.725356 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:56:01.725356 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:56:39.512418 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:56:39.512418 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:56:39.512418 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:56:39.512418 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:56:39.512418 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 15:56:39.574710 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:56:39.576719 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:56:39] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:56:39] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:56:46.959382 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:56:46.962381 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:56:46] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:56:46] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:56:51.295989 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_77507.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:56:52] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:56:52.596912 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:56:53] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:57:38.170184 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:57:38.170184 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:57:38.170184 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:57:38.170184 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:57:38.170184 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 15:57:47.133812 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:57:47.156684 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:57:47] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:57:47] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:57:49.774009 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_33137.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:57:51] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:57:51.846189 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:57:52] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 15:58:56.596888 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 15:58:56.596888 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 15:58:56.596888 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 15:58:56.596888 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 15:58:56.596888 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 15:58:56.675931 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:58:56.678935 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:58:56] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:58:56] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:59:05.141563 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 15:59:05.145566 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:59:05] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:59:05] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:59:07.546028 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_61576.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:59:09] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 15:59:09.133465 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 15:59:09] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:00:16.107178 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:00:16.107178 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:00:16.107178 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:00:16.108177 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:00:16.108177 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 16:00:45.768789 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:00:45.809884 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:00:46] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:00:46] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:00:51.616913 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_40636.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:00:56] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:00:56.520049 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:01:03] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:01:46.153335 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:01:46.162335 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:01:46] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:01:46] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:01:48.438433 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_67785.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:01:50] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:01:50.197910 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:01:51] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:02:38.972309 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:02:38.972309 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:02:38.972309 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:02:38.972309 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:02:38.972309 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 16:02:55.496992 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:02:55.500979 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:02:55] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:02:55] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:02:57.816761 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_81778.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:02:59] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:02:59.017323 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:02:59] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:03:28.703973 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:03:29.845319 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:03:30.244330 : Get_List_object_owner_collection_Stored_Files_With_Filter -"['68eb6ed8d980c4ab7268ba70']" is not a valid ObjectId, it must be a 12-byte input or a 24-character hex string - ERRORRRR AT Line : 1564 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:03:30] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:03:30.245720 : Get_List_object_owner_collection_Stored_Files_With_Filter -"['68eb6ed8d980c4ab7268ba70']" is not a valid ObjectId, it must be a 12-byte input or a 24-character hex string - ERRORRRR AT Line : 1564 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:03:30] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:03:58.341602 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:03:58.345605 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:03:58] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:03:58] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:04:00.344943 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_42058.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:04:01] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:04:01.665676 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:04:02] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:04:15.056172 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:04:15.082388 : Get_List_object_owner_collection_Stored_Files_With_Filter -"['68eb6ed8d980c4ab7268ba70']" is not a valid ObjectId, it must be a 12-byte input or a 24-character hex string - ERRORRRR AT Line : 1564 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:04:15] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:05:09.756193 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:05:09] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:05:20.365450 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:05:20.378431 : Get_List_object_owner_collection_Stored_Files -'68eb6ed8d980c4ab7268ba70, sdsddsdsdsdsds' is not a valid ObjectId, it must be a 12-byte input or a 24-character hex string - ERRORRRR AT Line : 929 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:05:20] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:05:21.029007 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:05:21.046442 : Get_List_object_owner_collection_Stored_Files_With_Filter -'68eb6ed8d980c4ab7268ba70, sdsddsdsdsdsds' is not a valid ObjectId, it must be a 12-byte input or a 24-character hex string - ERRORRRR AT Line : 1564 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:05:21] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:09:57.521036 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:09:57.524025 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:09:57] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:09:57] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:09:59.833417 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_91069.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:10:02] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:10:02.233646 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:10:02] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:17:34.400501 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:17:34.401619 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:17:34.401619 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:17:34.401619 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:17:34.401619 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 16:17:39.217939 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:17:40.416083 : Get_List_object_owner_collection_Stored_Files_With_Filter -"['68eb6ed8d980c4ab7268ba70']" is not a valid ObjectId, it must be a 12-byte input or a 24-character hex string - ERRORRRR AT Line : 1566 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:17:40] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:19:49.607899 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:19:49.612910 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:19:49.615938 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:19:49] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:19:49.626936 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:19:49] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:19:49.644485 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:19:49] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:19:49] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:19:49.863354 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:19:49] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:19:53.254651 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:19:53.258630 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:19:53] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:19:53] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:19:55.689913 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_76967.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:19:57] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:19:57.204106 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:19:57] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:20:21.742636 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:20:21.760623 : Get_List_object_owner_collection_Stored_Files_With_Filter -"['68eb6ed8d980c4ab7268ba70']" is not a valid ObjectId, it must be a 12-byte input or a 24-character hex string - ERRORRRR AT Line : 1566 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:20:21] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:22:26.364488 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:22:26.364488 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:22:26.364488 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:22:26.364488 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:22:26.364488 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 16:22:28.556944 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:22:30.186152 : Get_List_object_owner_collection_Stored_Files_With_Filter -"['68eb6ed8d980c4ab7268ba70']" is not a valid ObjectId, it must be a 12-byte input or a 24-character hex string - ERRORRRR AT Line : 1566 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:22:30] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:23:01.199049 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:23:01.199049 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:23:01.199049 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:23:01.199049 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:23:01.199049 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:25:43.226105 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:25:43.226105 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:25:43.226105 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:25:43.226105 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:25:43.226105 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 16:26:43.507069 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:26:43] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:27:05.668960 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:27:05] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/6913541d995b26cde9611ace HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:27:55.823880 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:27:55.823880 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:27:55.823880 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:27:55.823880 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:27:55.823880 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:29:25.275467 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:29:25.275467 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:29:25.275467 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:29:25.276467 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:29:25.276467 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:29:57.477856 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:29:57.478839 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:29:57.478839 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:29:57.478839 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:29:57.478839 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:30:43.429353 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:30:43.429353 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:30:43.429353 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:30:43.430353 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:30:43.430353 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:31:07.457245 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:31:07.458245 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:31:07.458245 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:31:07.458245 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:31:07.458245 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 16:31:35.234544 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:31:35.236544 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:31:35] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:31:35] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:31:38.127817 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n
\n
\n
\n

N° de déclaration d\'activité :  NDA-001254 

\n
\n
\n
\n
\n
 Est conclue la convention suivante entre
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes : prenom nonn 
Contact :   
Téléphone :  
\n

Et

\n
Et le bénéciaire :
 QSD SDS 
(Ci-aprés nommé le client)
Situé :     

\n
\n
\n

PRÉAMBULE
EZUS Lyon   Colas Rail filiale de Valorisation de l\'Université Claude Bernard Lyon I, s\'est vue confier la gestion des activités industrielles et commerciales des centres et services de l\'UCBL, ainsi que les actions de formation continue par la convention cadre signée le 23 janvier 2008.

\n

A cet effet, la société Colas Rail  fait appel au : Docteur Eric J. VOIGLIO, MD, PhD, FACS, FRCS Directeur ATLS France.

\n

Est conclu un contrat de formation professionnelle en application de l\'article L6353-3 du Code du Travail.

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation

\n

 Colas Rail 

\nFormation : CONDUIRE UN PROJET 
Durée : 15.0   heure (s) 
Lieu de formation :   vile sit1 
Dates de formation :  17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 
\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.

\n

Article 4 : Prix de la formation
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire :  1500.0 €

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation prenom   nonn 

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n

 

\n
\n

 

\n
\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_83451.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:31:40] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:31:40.528804 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:31:41] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:32:03.159501 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:32:13.479497 : Get_List_object_owner_collection_Stored_Files -"['68eb6ed8d980c4ab7268ba70']" is not a valid ObjectId, it must be a 12-byte input or a 24-character hex string - ERRORRRR AT Line : 929 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:32:13] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:32:15.056898 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:32:15.081860 : Get_List_object_owner_collection_Stored_Files -"['68eb6ed8d980c4ab7268ba70']" is not a valid ObjectId, it must be a 12-byte input or a 24-character hex string - ERRORRRR AT Line : 929 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:32:15] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:33:54.811611 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:33:54.812614 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:33:54.812614 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:33:54.812614 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:33:54.812614 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:34:05.035155 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:34:05.035155 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:34:05.035155 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:34:05.035155 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:34:05.035155 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 16:34:10.905565 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:34:11] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:34:22.365177 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:34:22] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:34:27.670113 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:34:27] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/691356dc995b26cde9611acf HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:35:32.428606 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:35:32.428606 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:35:32.428606 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:35:32.428606 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:35:32.428606 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\attached_file_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:35:52.280143 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:35:52.280143 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:35:52.280143 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:35:52.280143 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:35:52.280143 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 16:36:04.889878 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:36:04.893905 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:36:04] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:36:04] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:36:07.913166 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_85723.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:36:09] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:36:09.465114 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:36:14] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:37:03.223483 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:37:03] "POST /myclass/api/Get_Given_E_Document_Not_Signed_No_Token/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:37:52.520232 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n

\n
\n
\n
\n

N° de déclaration d\'activité :  NDA-001254 

\n
\n
\n
\n
\n
 Est conclue la convention suivante entre
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes : prenom nonn 
Contact :   
Téléphone :  
\n

Et

\n
Et le bénéciaire :
 qsdsq qsdqs 
(Ci-aprés nommé le client)
Situé :     

\n
\n
\n

PRÉAMBULE
EZUS Lyon   Colas Rail filiale de Valorisation de l\'Université Claude Bernard Lyon I, s\'est vue confier la gestion des activités industrielles et commerciales des centres et services de l\'UCBL, ainsi que les actions de formation continue par la convention cadre signée le 23 janvier 2008.

\n

A cet effet, la société Colas Rail  fait appel au : Docteur Eric J. VOIGLIO, MD, PhD, FACS, FRCS Directeur ATLS France.

\n

Est conclu un contrat de formation professionnelle en application de l\'article L6353-3 du Code du Travail.

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation

\n

 Colas Rail 

\nFormation : CONDUIRE UN PROJET 
Durée : 15.0   heure (s) 
Lieu de formation :   vile sit1 
Dates de formation :  17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 
\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.

\n

Article 4 : Prix de la formation
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire :  1500.0 €

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation prenom   nonn 

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n

 

\n
\n

 

\n
\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\t
Signature Client

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_Signe_11_11_2025_22.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 609 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 4158 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 609 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 4158 +INFO:root:2025-11-11 16:37:55.357401 : Internal_Usage_Store_User_Downloaded_File -'NoneType' object has no attribute 'append' - ERRORRRR AT Line : 382 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:37:55] "POST /myclass/api/Create_E_Signature_For_E_Document/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:38:39.784622 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:38:39] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:38:40.758688 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:38:40] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:38:45.764759 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:38:45] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/Q5rl1SB7yMgqvVejJzQPL95U860yzsUB1w/691357e9995b26cde9611ad0 HTTP/1.1" 200 - +INFO:root:2025-11-11 16:40:32.481951 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:40:33] "POST /myclass/api/Get_Given_E_Document_Not_Signed_No_Token/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:41:04.514657 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

\t
Signature Client

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_Signe_11_11_2025_51.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 597 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 4096 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 597 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 4096 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 5223 6 +INFO:root:2025-11-11 16:41:05.855303 : Internal_Usage_Store_User_Downloaded_File -'NoneType' object has no attribute 'append' - ERRORRRR AT Line : 382 +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:41:05] "POST /myclass/api/Create_E_Signature_For_E_Document/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\E_Sign_Document.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:43:59.033608 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:43:59.033608 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:43:59.034607 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:43:59.034607 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:43:59.034607 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:47:38.804424 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:47:38.804424 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:47:38.804424 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:47:38.804424 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:47:38.804424 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:48:44.620919 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:48:44.620919 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:48:44.620919 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:48:44.621920 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:48:44.621920 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:49:48.599596 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:49:48.599596 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:49:48.600605 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:49:48.600605 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:49:48.600605 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\E_Sign_Document.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:50:05.602672 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:50:05.602672 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:50:05.602672 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:50:05.602672 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:50:05.602672 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\E_Sign_Document.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:51:13.661898 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:51:13.661898 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:51:13.661898 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:51:13.661898 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:51:13.661898 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\E_Sign_Document.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:51:44.204275 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:51:44.204275 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:51:44.204275 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:51:44.204275 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:51:44.204275 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\Inscription_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-11 16:52:52.798991 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-11 16:52:52.798991 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-11 16:52:52.798991 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-11 16:52:52.798991 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-11 16:52:52.799991 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-11 16:54:51.889466 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-11 16:54:51.890471 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:54:51] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:54:51] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:54:56.580337 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 11/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_47443.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:root:2025-11-11 16:54:58.683652 : Create_E_Document Le champ 'class_id' n'est pas autorisé +INFO:root:2025-11-11 16:54:58.683652 : WARNING : impossible d'envoyer la convention au client : 68c535af5fd368bd641dceae +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:54:58] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-11 16:54:58.690638 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [11/Nov/2025 16:54:59] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-12 12:26:32.932804 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-12 12:26:32.932804 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-12 12:26:32.932804 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-12 12:26:32.932804 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-12 12:26:32.932804 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-12 12:26:39.395522 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-12 12:26:39.395522 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-12 12:26:39.395522 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-12 12:26:39.395522 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-12 12:26:39.395522 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\E_Sign_Document.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-12 12:34:14.594521 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-12 12:34:14.595521 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-12 12:34:14.595521 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-12 12:34:14.595521 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-12 12:34:14.595521 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\E_Sign_Document.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-12 12:34:49.840448 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-12 12:34:49.840448 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-12 12:34:49.841453 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-12 12:34:49.841453 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-12 12:34:49.841453 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-12 12:34:49.938946 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:34:49.939946 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:34:49] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:34:49] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:34:55.715175 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:34:55.724177 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:34:55] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:34:55.740135 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:34:55.743115 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:34:55.748120 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:34:55.767116 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:34:55] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:34:55] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:34:55] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:34:55] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:34:56.149069 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:34:56.152063 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:34:56.154065 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:34:56.160073 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:34:56.166171 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:34:56] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:34:56.175157 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:34:56] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:34:56] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:34:56] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:34:56] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:34:56] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:02.402806 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:02.405280 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:02.408604 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:02.412761 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:02.416759 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:02] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:02.422774 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:02.428877 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:02] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:02] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:02] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:02.438387 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:02] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:02.446705 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:02.451219 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:02] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:02] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:02.461209 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:02.468205 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:02] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:02] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:02] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:03] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:03] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:07.584672 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:07.591318 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:07.595327 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:07.600541 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:07.606943 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:07] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:07.617496 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:07] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:07] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:07.628498 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:07] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:07] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:07] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:07] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:09.950692 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:09.954488 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:09] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:11] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:16.466405 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:16.471835 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:16.475781 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:16.478788 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:16.484304 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:16.489420 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:16] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:16] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:16.498302 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:16] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:16] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:16] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:16] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:16] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:18.855539 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:18.859554 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:18] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:20] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:30.539897 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:35:30.544345 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:30] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:30] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:33.165315 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 12/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_95198.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:root:2025-11-12 12:35:35.126289 : Create_E_Document Le champ 'class_id' n'est pas autorisé +INFO:root:2025-11-12 12:35:35.126289 : WARNING : impossible d'envoyer la convention au client : 68c535af5fd368bd641dceae +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:35] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:35:35.133701 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:35:35] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\E_Sign_Document.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-12 12:38:05.558820 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-12 12:38:05.558820 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-12 12:38:05.559822 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-12 12:38:05.559822 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-12 12:38:05.559822 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-12 12:38:05.942685 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:05.952687 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:05.962681 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:05.968686 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:05.976696 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:05.987791 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:06] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:06] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:06] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:06] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:06] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:06] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:38:11.870120 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:11.873301 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:11.878311 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:11] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:38:11.888349 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:11.898603 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:11] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:11] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:11] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:38:11.966599 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:11.970607 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:11.973765 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:11.978774 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:11.983956 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:11] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:11] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:38:11.992458 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:11.992458 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:11.998552 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:12] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:12] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:38:12.008584 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:12] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:12] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:38:12.016585 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:12] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:38:12.024006 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:12.035018 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:12] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:12] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:12] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:12] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:13] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:38:15.340258 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:15.344482 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:15.348481 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:15.351480 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:15.357482 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:15] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:38:15.365502 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:15] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:15] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:38:15.372501 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:15] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:15] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:15] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:15] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:38:17.520095 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:17.523192 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:18] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:38:26.648474 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:38:26.654593 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:26] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:26] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:38:28.751322 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 12/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_53845.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:35] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:38:35.532379 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:38:35] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:39:39.312657 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:39:40] "POST /myclass/api/Get_Given_E_Document_Not_Signed_No_Token/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:40:17.870051 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 12/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

\t
Signature Client

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_Signe_12_11_2025_03.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 600 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 3901 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 600 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 3901 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 3954 6 +INFO:root:2025-11-12 12:40:21.443582 : Create_E_Signature_For_E_Document -name 'class_data' is not defined - Line : 1341 +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:40:21] "POST /myclass/api/Create_E_Signature_For_E_Document/ HTTP/1.1" 200 - +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\E_Sign_Document.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-12 12:42:25.311556 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-12 12:42:25.311556 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-12 12:42:25.311556 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-12 12:42:25.312554 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-12 12:42:25.312554 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\E_Sign_Document.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-12 12:42:46.810235 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-12 12:42:46.810235 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-12 12:42:46.810235 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-12 12:42:46.810235 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-12 12:42:46.810235 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\E_Sign_Document.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-12 12:43:52.298970 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-12 12:43:52.300076 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-12 12:43:52.300076 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-12 12:43:52.300076 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-12 12:43:52.300076 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\E_Sign_Document.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-12 12:50:52.832423 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-12 12:50:52.832423 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-12 12:50:52.832423 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-12 12:50:52.832423 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-12 12:50:52.832423 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-12 12:51:03.892491 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-12 12:51:03.892491 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-12 12:51:03.892491 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-12 12:51:03.892491 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-12 12:51:03.892491 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-12 12:51:25.866961 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:51:25.870963 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:51:25] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:51:25] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:51:29.180712 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 12/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_44815.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:51:31] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:51:31.995866 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:51:32] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:52:21.665067 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:52:21.672066 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:52:21] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:52:21] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:52:25.289166 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 12/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_39512.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:52:28] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:52:28.274655 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:52:29] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:53:01.611326 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:03] "POST /myclass/api/Get_Given_E_Document_Not_Signed_No_Token/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:53:22.480212 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 12/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

\t
Signature Client

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_Signe_12_11_2025_58.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 597 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 4096 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 597 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 4096 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 4928 6 +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:24] "POST /myclass/api/Create_E_Signature_For_E_Document/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:53:56.985277 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:53:56.991276 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:53:56.999279 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:53:57.006275 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:57] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:53:57.035806 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:57] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:57] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:57] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:53:57.110337 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:53:57.118337 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:53:57.123349 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:53:57.132349 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:57] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:53:57.142863 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:57] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:53:57.157865 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:53:57.167885 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:57] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:53:57.180864 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:57] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:53:57.199865 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:57] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:57] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:53:57.214875 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:57] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:53:57.224381 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:53:57.242965 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:57] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:57] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:57] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:53:58] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:54:00] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:54:07.741022 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:54:07] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:54:13.559655 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:54:13] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/CpP6CowvwoiFG_-qAFK12ECBRcc5i72yug/69147534995b26cde9611ad4 HTTP/1.1" 200 - +INFO:root:2025-11-12 12:54:30.172764 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:54:30] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/CpP6CowvwoiFG_-qAFK12ECBRcc5i72yug/691474fc995b26cde9611ad3 HTTP/1.1" 200 - +INFO:root:2025-11-12 12:55:27.442997 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:55:27.449998 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:55:27.455999 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:55:27.468997 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:27] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:55:27.485022 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:55:27.497018 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:27] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:55:27.510548 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:27] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:27] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:27] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:27] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:55:29.463619 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:55:29.469618 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:29] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:31] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:55:40.172364 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:40] "POST /myclass/api/archive_session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:55:40.280265 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:40] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:55:47.311289 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:55:47.317289 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:55:47.323306 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:55:47.327305 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:55:47.343843 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:55:47.347850 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:47] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:47] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:55:47.369848 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:47] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:47] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:47] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:47] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:47] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:55:49.301667 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:55:49.305669 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:49] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:55:51] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:56:05.034231 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:56:05.039231 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:05] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:05] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:56:08.361178 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:08] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:56:08.498914 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:09] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:56:26.264050 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:56:26.269052 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:56:26.280052 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:56:26.296070 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:26] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:26] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:56:26.311707 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:26] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:56:26.320703 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:56:26.339704 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:26] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:26] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:26] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:26] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:56:28.095193 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:56:28.097189 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:28] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:30] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:56:34.912355 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:56:34.917355 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:56:34.922924 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:56:34.930957 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:56:34.939935 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:56:34.948951 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:34] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:34] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:56:34.963930 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:34] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:34] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:34] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:34] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:34] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:56:36.673025 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:56:36.679929 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:38] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:56:45.665921 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:56:45.673014 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:45] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:45] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:56:52.735348 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
\n
\n
\n

A l\'attention  mme   prenom test01  

Situé :        

\n
\n
\n
\n
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : Christian XXXX
Signataire dûment habilité aux fins des présentes : Emmanuelle XXXXXX
Contact :  contact@elyos-si.org
Téléphone : 01 XX XX XX XX 
\n
à le plaisir de vous convier à la formation ci-dessous :
Formation :   BESOIN DE SÉCURITÉ : UNE AUTRE LECTURE DES COMPORTEMENTS
Durée :  1.0 jour (s)
Lieu de formation :     , -  
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
\n
Les séquences de formation  :
\n
Du    27/08/2024 09:00  au 27/08/2024 12:00
\n
Du    27/08/2024 13:30  au 27/08/2024 17:00
\n
Du    28/08/2024 09:00  au 28/08/2024 12:00
\n
Du    28/08/2024 13:30  au 28/08/2024 17:00
\n
\n
Au plaisir de vous retrouver prochainement,
\n
12/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Convocation_43598_74547.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:55] "POST /myclass/api/Prepare_and_Send_Convocation_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:56:55.144767 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:56:55] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:57:06.291473 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:57:06.320482 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:57:06] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:57:06] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:57:13.250271 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n
\n
\n
\n

N° de déclaration d\'activité :  NDA-001254 

\n
\n
\n
\n
\n
 Est conclue la convention suivante entre
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes : prenom nonn 
Contact :   
Téléphone :  
\n

Et

\n
Et le bénéciaire :
 cherfi balde 
(Ci-aprés nommé le client)
Situé :     

\n
\n
\n

PRÉAMBULE
EZUS Lyon   Colas Rail filiale de Valorisation de l\'Université Claude Bernard Lyon I, s\'est vue confier la gestion des activités industrielles et commerciales des centres et services de l\'UCBL, ainsi que les actions de formation continue par la convention cadre signée le 23 janvier 2008.

\n

A cet effet, la société Colas Rail  fait appel au : Docteur Eric J. VOIGLIO, MD, PhD, FACS, FRCS Directeur ATLS France.

\n

Est conclu un contrat de formation professionnelle en application de l\'article L6353-3 du Code du Travail.

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation

\n

 Colas Rail 

\nFormation : BESOIN DE SÉCURITÉ : UNE AUTRE LECTURE DES COMPORTEMENTS 
Durée : 1.0   jour (s) 
Lieu de formation :    
Dates de formation :  26/08/2024  28/08/2024 
Nom formateur :  
\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.

\n

Article 4 : Prix de la formation
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire :  227.0 €

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

Paris , 12/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation prenom   nonn 

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n

 

\n
\n

 

\n
\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_41975.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:57:21] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:57:21.697761 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:57:23] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:57:53.806196 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:57:53.852550 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:57:53] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:57:53] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:59:04.837022 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:59:04.860011 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:04] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:04] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:59:25.397797 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:59:25.431532 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:59:25.452229 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:25] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:59:25.477154 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:59:25.499740 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:25] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:25] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:59:25.532523 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:25] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:59:25.552229 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:25] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:59:25.569381 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:59:25.597150 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:25] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:25] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:59:25.634661 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:59:25.647449 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:59:25.682347 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:25] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:25] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:26] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:28] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:32] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:59:37.908143 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 12:59:37.911140 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:37] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:37] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:59:43.556535 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

 

\n
\n
\n
\n
\n

A l\'attention  mme   prenom test01  

Situé :        

\n
\n
\n
\n
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : Christian XXXX
Signataire dûment habilité aux fins des présentes : Emmanuelle XXXXXX
Contact :  contact@elyos-si.org
Téléphone : 01 XX XX XX XX 
\n
à le plaisir de vous convier à la formation ci-dessous :
Formation :   BESOIN DE SÉCURITÉ : UNE AUTRE LECTURE DES COMPORTEMENTS
Durée :  1.0 jour (s)
Lieu de formation :     , -  
Vous êtes invités à vous présenter 20 minutes avant l\'horaire prévu.
\n
\n
Les séquences de formation  :
\n
Du    27/08/2024 09:00  au 27/08/2024 12:00
\n
Du    27/08/2024 13:30  au 27/08/2024 17:00
\n
Du    28/08/2024 09:00  au 28/08/2024 12:00
\n
Du    28/08/2024 13:30  au 28/08/2024 17:00
\n
\n
Au plaisir de vous retrouver prochainement,
\n
12/11/2025
\n

\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Convocation_43598_20539.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:46] "POST /myclass/api/Prepare_and_Send_Convocation_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-12 12:59:46.457916 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 12:59:46] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:00:09.049599 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:00:09] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:00:09.114601 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:00:09.162128 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:00:09.185127 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:00:09] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:00:09] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:00:09.231136 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:00:09] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:00:09.276192 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:00:10] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:00:39.741507 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:00:39] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:00:48.582157 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:00:48] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/CpP6CowvwoiFG_-qAFK12ECBRcc5i72yug/69147607995b26cde9611ad5 HTTP/1.1" 200 - +INFO:root:2025-11-12 13:01:17.118004 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:01:17] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:01:40.009350 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:01:40] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:02:30.084394 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:02:30] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/CpP6CowvwoiFG_-qAFK12ECBRcc5i72yug/68eb7b78d980c4ab7268ba74 HTTP/1.1" 200 - +INFO:root:2025-11-12 13:04:01.438575 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:04:01] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:04:02.829870 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:04:02] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:04:09.224005 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:04:09] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:04:17.717625 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:04:17] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:05:18.307152 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:05:18] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:07:25.481278 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:07:25] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:07:36.227365 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:07:36.232442 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:07:36.238546 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:07:36.247451 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:07:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:07:36.264962 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:07:36.276208 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:07:36] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:07:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:07:36.297934 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:07:36] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:07:36] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:07:36] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:07:36] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:07:38.586162 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:07:38.592115 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:07:38] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:07:40] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:07:47.052915 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:07:47.058926 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:07:47] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:07:47] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:07:50.945281 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 12/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_05813.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:07:54] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:07:54.202836 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:07:55] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:08:04.103975 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:08:04.135177 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:08:04] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:08:04] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:08:07.151168 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n
\n
\n
\n

N° de déclaration d\'activité :  NDA-001254 

\n
\n
\n
\n
\n
 Est conclue la convention suivante entre
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes : prenom nonn 
Contact :   
Téléphone :  
\n

Et

\n
Et le bénéciaire :
 qsdsq qsdqs 
(Ci-aprés nommé le client)
Situé :     

\n
\n
\n

PRÉAMBULE
EZUS Lyon   Colas Rail filiale de Valorisation de l\'Université Claude Bernard Lyon I, s\'est vue confier la gestion des activités industrielles et commerciales des centres et services de l\'UCBL, ainsi que les actions de formation continue par la convention cadre signée le 23 janvier 2008.

\n

A cet effet, la société Colas Rail  fait appel au : Docteur Eric J. VOIGLIO, MD, PhD, FACS, FRCS Directeur ATLS France.

\n

Est conclu un contrat de formation professionnelle en application de l\'article L6353-3 du Code du Travail.

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation

\n

 Colas Rail 

\nFormation : CONDUIRE UN PROJET 
Durée : 15.0   heure (s) 
Lieu de formation :   vile sit1 
Dates de formation :  17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 
\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.

\n

Article 4 : Prix de la formation
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire :  1500.0 €

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

Paris , 12/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation prenom   nonn 

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n

 

\n
\n

 

\n
\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_17924.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

 

\n

\n
\n
\n
\n

N° de déclaration d\'activité :  NDA-001254 

\n
\n
\n
\n
\n
 Est conclue la convention suivante entre
\n
L\'Organisme de formation  Colas Rail   ci-après nommé l\'Organisme de formation
Situé : rue de la république 77 paris 
Déclation d\'activité :  NDA-001254  Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes : prenom nonn 
Contact :   
Téléphone :  
\n

Et

\n
Et le bénéciaire :
 QSD SDS 
(Ci-aprés nommé le client)
Situé :     

\n
\n
\n

PRÉAMBULE
EZUS Lyon   Colas Rail filiale de Valorisation de l\'Université Claude Bernard Lyon I, s\'est vue confier la gestion des activités industrielles et commerciales des centres et services de l\'UCBL, ainsi que les actions de formation continue par la convention cadre signée le 23 janvier 2008.

\n

A cet effet, la société Colas Rail  fait appel au : Docteur Eric J. VOIGLIO, MD, PhD, FACS, FRCS Directeur ATLS France.

\n

Est conclu un contrat de formation professionnelle en application de l\'article L6353-3 du Code du Travail.

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation

\n

 Colas Rail 

\nFormation : CONDUIRE UN PROJET 
Durée : 15.0   heure (s) 
Lieu de formation :   vile sit1 
Dates de formation :  17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 
\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.

\n

Article 4 : Prix de la formation
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire :  1500.0 €

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

Paris , 12/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation prenom   nonn 

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n

 

\n
\n

 

\n
\n

 

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_43598_75645.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:08:17] "POST /myclass/api/Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:08:17.822340 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:08:26] "POST /myclass/api/Get_Editable_Document_By_Partner_By_Collection/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:08:43.268318 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:08:44] "POST /myclass/api/Get_Given_E_Document_Not_Signed_No_Token/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:09:19.718510 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '


 

\n

\n

\n
\n
\n

 

\n\n\n\n\n\n\n\n
\n

Entre L\'Organisme de formation    ci-après nommé l\'Organisme de formation
Situé :    
Déclation d\'activité :   Représenté par : [PDG]
Signataire dûment habilité aux fins des présentes :  prenom nonn 
Contact :   

\n

 

\n
\n

Et le bénéciaire : FRANCE TRAVAIL   Réprésenté par
(Ci-aprés nommé le client)
Situé : Bat D1 - 4 ème étage 5 rue Saint-Christophe BP 1067  97200   
Représenté par :  FT contact_prenom FT contact_prenom  en qualité de
Contact : francetravail1@francetravail.fr 

\n

 

\n
\n
\n

Est conclue la convention suivante. 

\n

Article 1 : Objet, nature, et durée de la formation
Le bénéciaire entend faire participer une partie de son personnel à l\'action de formation suivante organisée par l\'organisme de formation Colas Rail 

\n


Formation :  CONDUIRE UN PROJET 

Durée : 15.0   heure (s) 
Lieu de formation :vile sit1 
Dates de formation : 17/11/2025  18/11/2025 
Nom formateur : nom_Enseignant_2 Prenom_2 

\n

Article 2 : Programme de la formation
La description detaillée du programme (méthodes pédagogiques, évaluation) est fourni au client

\n

Article 3 : Engagement de participation à la formation
Le bénéciaire s\'engage à assurer la présence du / des stagiaire/s aux dates et lieux prévus ci-dessus.
Liste des stagiaires : 

\n
xddd   qsdqsd   mysy1000formation+04@gmail.com
\n

Article 4 : Prix de la formation 
La formation est réglée en totalité par le client
Coût pédagogique par stagiaire : 1500.0 

\n

Article 5 : Modalités de réglement
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article 6 : Moyes pédagogiques et techniques mises en oeuvre
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

Article x : Litiges
orem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

\n

 

\n

 

\n

Paris , 12/11/2025 

\n\n\n\n\n\n\n\n
\n

Pour l\'organisme de formation
prenom  nonn

\n
\n

Pour le client :
Nom & Prénom du Signataire

\n
\n

 

\n

 

\n

 

\n

Colas Rail 
Téléphone : 
Site web : https://colasrail.com/ 

\n

 

\n

 

\t
Signature Client

' + dest = <_io.BufferedRandom name='./temp_direct/Convention_Signe_12_11_2025_72.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 605 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 4096 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'PLTE' 41 6 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 59 605 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 41 4096 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 4461 6 +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:09:22] "POST /myclass/api/Create_E_Signature_For_E_Document/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:09:31.624433 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:09:32] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:09:44.429328 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:09:44] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:09:48.814478 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:09:48] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:10:12.406406 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:10:12] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/CpP6CowvwoiFG_-qAFK12ECBRcc5i72yug/6914789a995b26cde9611ad8 HTTP/1.1" 200 - +INFO:root:2025-11-12 13:10:15.743356 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:10:15] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/CpP6CowvwoiFG_-qAFK12ECBRcc5i72yug/691478f2995b26cde9611adb HTTP/1.1" 200 - +INFO:root:2025-11-12 13:10:26.681242 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:10:26] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/CpP6CowvwoiFG_-qAFK12ECBRcc5i72yug/691478f2995b26cde9611adb HTTP/1.1" 304 - +INFO:root:2025-11-12 13:10:46.405371 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:10:46] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:11:36.167244 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:11:36.173366 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:11:36.178280 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:11:36.181417 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:11:36] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:11:36.186182 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:11:36.189710 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:11:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:11:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:11:36.199728 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:11:36] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:11:36] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:11:36] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:11:36] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:11:39.919436 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:11:39.922525 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:11:39] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:11:41] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:11:58.244426 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:11:58] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:12:04.432005 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:12:04] "POST /myclass/api/Get_List_Modele_Attestion_Formation_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:12:07.416282 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:12:07] "POST /myclass/api/Init_Attestation_Formation_With_Template_For_All_Inscription/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:12:07.479193 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:12:07] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:12:19.395218 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

\n
\n
\n
\n
\n
Par la presente, L\'Organisme de formation  Colas Rail   
Situé : rue de la république 77 paris , déclation d\'activité :  NDA-001254 ,
\n
Atteste que :  part 1 part nom 1  
\n
a suivi la formation CONDUIRE UN PROJET
Durée :  15.0 heure (s)
Lieu de formation :   vile sit1
Dates de formation :  29/09/2025 au 07/10/2025
Nom formateur :  nom_Enseignant_2 Prenom_2
\n
 
\n
Contenu de la formation  :  
\n
\n
 
\n
Paris , 12/11/2025
\n

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Attestation_43598_71506.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None] +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:12:21] "POST /myclass/api/Prepare_and_Send_Attestation_From_Session_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:12:21.670320 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:12:21] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:12:35.298763 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:12:35] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:13:15.204036 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:13:15] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:13:22.271474 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:13:22] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:15:53.566292 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:15:54] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:16:05.856344 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:16:06] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:16:12.463772 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:16:12] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:16:38.483938 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:16:38] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:17:26.109050 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:17:26] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:18:21.507566 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:18:21] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/CpP6CowvwoiFG_-qAFK12ECBRcc5i72yug/691479a5995b26cde9611ae0 HTTP/1.1" 200 - +INFO:root:2025-11-12 13:21:04.872911 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

\n
\n
\n
\n
\n
Par la presente, L\'Organisme de formation  Colas Rail   
Situé : rue de la république 77 paris , déclation d\'activité :  NDA-001254 ,
\n
Atteste que :  part 1 part nom 1  
\n
a suivi la formation CONDUIRE UN PROJET
Durée :  15.0 heure (s)
Lieu de formation :   vile sit1
Dates de formation :  29/09/2025 au 07/10/2025
Nom formateur :  nom_Enseignant_2 Prenom_2
\n
 
\n
Contenu de la formation  :  
\n
\n
 
\n
Paris , 12/11/2025
\n

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Attestation_43598_71846.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None] +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:21:06] "POST /myclass/api/Prepare_and_Send_Attestation_From_Session_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:21:06.881945 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:21:06] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:24:53.203207 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:24:53] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:25:31.828063 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:25:31] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:27:27.292353 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:27:27] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:27:46.139741 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '

\n
\n
\n
\n
\n
Par la presente, L\'Organisme de formation  Colas Rail   
Situé : rue de la république 77 paris , déclation d\'activité :  NDA-001254 ,
\n
Atteste que :  part 1 part nom 1  
\n
a suivi la formation CONDUIRE UN PROJET
Durée :  15.0 heure (s)
Lieu de formation :   vile sit1
Dates de formation :  29/09/2025 au 07/10/2025
Nom formateur :  nom_Enseignant_2 Prenom_2
\n
 
\n
Contenu de la formation  :  
\n
\n
 
\n
Paris , 12/11/2025
\n

\n

 Colas Rail 
Téléphone : 07 69 20 39 45 
Email :  mysytraining+dev@gmail.com 
Site :  https://colasrail.com/ 

\n

 

\n
' + dest = <_io.BufferedRandom name='./temp_direct/Attestation_43598_32752.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None] +DEBUG:xhtml2pdf.files:FileObject '', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': None, 'height': None, 'align': None, 'id': None} +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'sRGB' 41 1 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 54 4 +DEBUG:PIL.PngImagePlugin:STREAM b'cHRM' 70 32 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 114 9 +DEBUG:PIL.PngImagePlugin:STREAM b'tIME' 135 7 +DEBUG:PIL.PngImagePlugin:b'tIME' 135 7 (unknown) +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 154 8192 +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'gAMA' 41 4 +DEBUG:PIL.PngImagePlugin:STREAM b'pHYs' 57 9 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 28781 +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:27:47] "POST /myclass/api/Prepare_and_Send_Attestation_From_Session_By_Email/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:27:47.876980 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:27:47] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:01.045287 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:01.065867 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:01.085864 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:01] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:01.111397 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:01] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:01] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:01] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:01.145414 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:01.156414 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:01.195409 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:01] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:01] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:01] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:07.694126 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:07] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:13.868104 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:13] "POST /myclass/api/Get_List_Modele_Attestion_Formation_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:29.476157 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:29.520178 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:29.548179 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:29.585259 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:29.607260 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:29.610257 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:29.645275 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:29.674598 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:29.715600 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:29.756189 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:29.777702 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:29.800258 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:29.840885 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:29.865467 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/Get_List_Type_Evaluation/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:29.880473 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:29.902488 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/Get_List_Class_Evaluation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:29.935070 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:29.951091 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:29.981134 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:29] "POST /myclass/api/Get_List_Unite_Enseignement_Of_Given_Class/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:30.001129 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:30.022128 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:30] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:30.050146 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:30.069695 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:30.092689 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:30] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:30.140711 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:31.884206 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:31.894195 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:31.931084 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/Get_List_Class_Niveau_Formation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/getRecodedClassImage/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:35.512096 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:35.539119 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:35.589546 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:35.620550 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:35.647545 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/Get_List_Conventions_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/Get_List_Formulaire_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/Get_List_Formulaire_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:35.708094 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/Get_List_Formulaire_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:35.750103 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:35.780643 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:35] "POST /myclass/api/Get_List_Modele_Attestion_Formation_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:35.833663 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:35.852179 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:35.875706 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:30:35.907403 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:36] "POST /myclass/api/Get_List_Modele_Attestion_Formation_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:36] "POST /myclass/api/Get_List_Formulaire_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:36] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:36] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:36] "POST /myclass/api/Get_Given_Class_List_Default_Documents/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:40.598425 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:41] "POST /myclass/api/Update_Class_Default_Document/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:44.270385 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:44] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:46.318319 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:46] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:30:51.204099 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:30:51] "POST /myclass/api/Get_List_Modele_Attestion_Formation_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:31:02.153083 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:31:02.158083 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:31:02.164083 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:02] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:31:02.182186 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:31:02.196151 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:02] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:02] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:02] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:31:02.239360 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:31:02.245358 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:31:02.253356 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:31:02.261469 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:31:02.271459 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:02] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:02] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:31:02.286403 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:02] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:02] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:02] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:31:02.310360 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:02] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:31:02.319482 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:31:02.323586 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:31:02.334125 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:02] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:31:02.348104 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:31:02.363061 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:02] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:02] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:02] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:03] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:05] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:31:06.888978 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:31:06.895551 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:31:06.902914 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:06] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:06] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:31:06.929131 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:31:06.939130 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:06] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:31:06.951816 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:31:06.963593 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:06] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:06] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:06] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:06] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:31:08.825044 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:08] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:31:13.655286 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:13] "POST /myclass/api/Get_List_Modele_Attestion_Formation_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:31:17.971605 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:17] "POST /myclass/api/Init_Attestation_Formation_With_Template_For_All_Inscription/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:31:18.041910 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:31:18] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:32:17.151976 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:17] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:32:25.564410 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:32:25.567394 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:25] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:26] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:32:32.466102 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:32] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:32:51.405611 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:32:51.408611 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:32:51.412063 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:32:51.417273 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:32:51.420316 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:51] "POST /myclass/api/Get_Partner_All_Class_Few_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:32:51.427314 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:32:51.433314 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:51] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:51] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:32:51.441320 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:51] "POST /myclass/api/Get_Partner_Session_Ftion_Reduice_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:32:51.448641 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:32:51.449642 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:51] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:51] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:51] "POST /myclass/api/Get_List_Unite_Enseignement_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:51] "POST /myclass/api/Get_List_Partner_Apprenant/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:52] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:52] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:32:58.476560 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:32:58] "POST /myclass/api/Get_Apprenant_List_Partner_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:34:09.038173 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:34:09] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:35:11.211262 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:35:11.216260 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:35:11.223268 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:35:11.229377 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:11] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:35:11.243902 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:35:11.247889 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:11] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:11] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:11] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:35:11.274889 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:11] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:11] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:35:11.286892 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:35:11.290992 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:35:11.298996 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:35:11.309914 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:11] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:35:11.321899 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:11] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:11] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:11] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:13] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:15] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:35:16.998325 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:35:17.002392 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:35:17.005334 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:35:17.011151 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:35:17.020136 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:17] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:35:17.029158 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:35:17.048675 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:17] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:17] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:17] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:17] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:35:19.871407 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:35:19.874315 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:19] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:21] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:35:28.240281 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:35:28.245179 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:28] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:35:28] "POST /myclass/api/Get_List_Convocations_Stagiaire_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:43:52.845576 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:43:52.852580 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:43:52.859578 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:43:52.863578 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:43:52.877614 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:52] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:52] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:52] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:43:52.897099 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:43:52.903095 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:52] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:43:52.912097 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:52] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:43:52.930097 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:52] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:52] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:43:52.946103 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:43:52.950612 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:43:52.957118 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:52] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:52] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:53] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:43:53.374185 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:43:53.382195 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:43:53.399710 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:43:53.405708 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:53] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:53] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:43:53.447719 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:43:53.461754 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:53] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:53] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:53] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:43:53.493805 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:43:53.503317 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:53] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:43:53.507317 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:43:53.532313 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:53] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:53] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:43:53.556316 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:43:53.580321 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:53] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:43:53.621866 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:53] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:53] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:54] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:54] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:56] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:43:56] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:45:09.054492 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:09] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:45:32.328744 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:32.330752 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:32.339741 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:32.344742 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:32] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:45:32.373742 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:32] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:32] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:32] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:45:32.418396 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:32.424390 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:32.430029 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:32.440030 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:32] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:32] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:45:32.453024 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:32.463023 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:32] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:45:32.482030 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:32] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:32] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:32] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:45:32.498059 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:32.510030 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:32] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:45:32.521049 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:32.539578 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:32.566162 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:32] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:32] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:32] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:34] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:35] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:45:36.805237 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:36.811986 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:36.814985 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:36.819161 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:36.828117 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:45:36.835806 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:45:36.846201 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:36] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:36] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:36] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:36] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:36] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:36] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:45:39.113665 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:45:39] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:04.484553 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:04] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:05.369693 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:05] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:14.044523 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:46:14.063524 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:14] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:14.088535 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:46:14.107054 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:46:14.115053 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:14] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:14] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:14.133651 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:14] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:14.152385 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:14] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:14.171398 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:46:14.181421 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:14] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:14] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:14] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:14.201964 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:46:14.220955 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:46:14.232177 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:14] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:14] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:14.263755 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:14] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:14.282750 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:46:14.298265 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:14] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:14.331296 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:46:14.345794 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:14] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:14] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:15] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:16] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:17.616066 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:46:17.622079 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:46:17.628065 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:46:17.638073 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:17.652071 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:17] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:17] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:17.672071 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 13:46:17.680072 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:17] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:17] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:17] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:21.480700 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:21] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 13:46:26.161119 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 13:46:26] "POST /myclass/api/Get_List_Modele_Attestion_Formation_With_Filter/ HTTP/1.1" 200 - +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-12 18:37:10.722026 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-12 18:37:10.723025 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-12 18:37:10.723025 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-12 18:37:10.723025 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-12 18:37:10.724025 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +INFO:werkzeug:WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead. + * Running on http://localhost:5001 +INFO:werkzeug:Press CTRL+C to quit +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-12 18:38:57.460867 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-12 18:38:57.461872 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-12 18:38:57.461872 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-12 18:38:57.478504 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-12 18:38:57.478504 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:werkzeug: * Detected change in 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\email_mgt.py', reloading +INFO:werkzeug: * Restarting with stat +DEBUG:matplotlib:matplotlib data path: C:\Users\Cherif\Documents\myclass.com\Siteweb\Elyos_Ftion_Continue\Ela_back\Back_Office\venv\Lib\site-packages\matplotlib\mpl-data +DEBUG:matplotlib:CONFIGDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib:interactive is False +DEBUG:matplotlib:platform is win32 +DEBUG:matplotlib:CACHEDIR=C:\Users\Cherif\.matplotlib +DEBUG:matplotlib.font_manager:Using fontManager instance from C:\Users\Cherif\.matplotlib\fontlist-v390.json +INFO:root:2025-11-12 18:44:40.740629 : ++++ ENVIRONNEMENT DEVELOPPEMENT ++++ +INFO:root:2025-11-12 18:44:40.740629 : ++ DATABASE mongodb://localhost:27017/cherifdb_dev_fi ++ +INFO:root:2025-11-12 18:44:40.741628 : ++ DBNAME Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True), 'cherifdb_dev_fi') ++ +INFO:root:2025-11-12 18:44:40.741628 : ++ FLASK PORT 5001 ++ +INFO:root:2025-11-12 18:44:40.741628 : ++ LMS_BAS_URL mysy-hosting.com/ ++ +WARNING:werkzeug: * Debugger is active! +INFO:werkzeug: * Debugger PIN: 479-264-725 +INFO:root:2025-11-12 18:44:40.860224 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:44:40] "GET /myclass/api/ManualSendInvoiceEmailRIB_CIC_BureauVallee HTTP/1.1" 308 - +INFO:root:2025-11-12 18:44:40.871212 : Security check : IP adresse '127.0.0.1' connected +DEBUG:xhtml2pdf.document:pisaDocument options: + src = '\n\n\n\n\t
\n\t\tMysy Training Logo \n\t
\n\t\n\t\t
\n\t\t\t
\n\t\t\t\t\n\t\t\t\t
\n\t\t\t\t\n\t\t\t\t\tBVD Fr (Bureau Vallée)
\n\t\t\t\t\t25 rue du Gros Caillou
\n\t\t\t\t\t78340 – Les Clayes-sous-Bois- France
\n\n\t\t\t\t
\n\n\n\t\t\t\t\n\n\t\t\t\t\tFacture n° FACT_20251020\n\n\n\t\t\t\t
\n\n\n\n\t\t\t\t\n\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t
Date de facture: 31/10/2025 Date échéance : 15/11/2025
\n\n\t\t\t\t\n\t\t\t\t\tPériode : 01/10/2025 au 31/10/2025 \n\t\t\t\t\n\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t
DescriptionQuantitéPrix unitaire (HT)Montant (HT)
Prestation de service
\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t
23 jours550 € HT12 650 € HT
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\n\t\t\t\t\t\t\t\n\n\n\t\t\t\t\t\t\n\n\t\t\t\t\t
Déplacement Bureau - PapetShow -\n\t\t\t\t\t\t\t\t15/10/2025 et 16/10/2025
\n\t\t\t\t\t\t\t\tDeplacement bureau <=> papet show (Aller / retour) : 16,8 km X 2 X 2 jrs = 67,2 Km\n\t\t\t\t\t\t\t\t\t(https://www.impots.gouv.fr/simulateur-bareme-kilometrique) 47 € HT
 
Déplacement Bureau - Magasin Paris 5 -\n\t\t\t\t\t\t\t\t8/10/2025
\n\t\t\t\t\t\t\t\tDeplacement bureau <=> Magasin Paris 5 (Aller / retour) : 37,6 km X 2 = 75,2 Km\n\t\t\t\t\t\t\t\t\t(https://www.impots.gouv.fr/simulateur-bareme-kilometrique) 52 € HT
\n\t\t\t\t\n\n\n\t\t\t\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t
    Montant HT: 12 749   €
    TVA : 2 549,8   €
    Montant TTC : 15 298,8  €
\n\n\t\t\t
\n\n\t\t\t\n\t\t\t\tRèglement : Virement bancaire \n\n\n\t\t\t

\n\t\t\t\t> Relevé d\'identité bancaire : MySy Training Technology, 2 place des magnolias, 77680, Roissy en\n\t\t\t\t\tbrie \n\t\t\t

\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\n\n\n\t\t\t\t\n\n\t\t\t
BanqueCode agenceNuméro de compteClé RIB
30087338560002128550340
\n\n\t\t\t

\n\t\t\t\t> Identification internationale\n\t\t\t

\n\n\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\n\t\t\t\t\n\t\t\t\t\n\t\t\t\t\t\n\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\n\t\t\t\t\t\n\n\n\n\t\t\t\t\n\n\t\t\t
IBANCode BIC
FR76 3008 7338 5600 0212 8550 340CMCIFRPP
\n\n\t\t\n\n\t\n\n\t
\n\t\n\n\t\tTermes et conditions
\n\n\t\tPas d\'escompte accordé pour paiement anticipé.
\n\t\tEn cas de non-paiement à la date d\'échéance, des pénalités calculées à trois fois le taux d\'intérêt légal\n\t\tseront appliquées.
\n\t\tTout retard de paiement entraînera une indemnité forfaitaire pour frais de recouvrement de 40€.
\n\n\t\n\n\n\t
\n\t\t\n\n\t\t\tMySy Training
\n\n\t\t\tMySy Training Technology (MTT), société par actions simplifiée au capital de 10 000 euros, dont le siège\n\t\t\tsocial est\n\t\t\tsitué 2, place des magnolias, 77680, Roissy en Brie, immatriculée au Registre du Commerce et des\n\t\t\tSociétés sous le numéro 917 500 860 R.C.S. Melun\n\n\t\t\n\t
\n\n\n' + dest = <_io.BufferedRandom name='./Invoices/invoice_FACT_20251020.pdf'> + path = '' + link_callback = None + xhtml = False + context_meta = None +DEBUG:xhtml2pdf.files:FileObject './../img/MYSY-LOGO-BLUE.png', Basepath: 'C:\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__' +DEBUG:xhtml2pdf.files:URLParts: ParseResult(scheme='c', netloc='', path='\\Users\\Cherif\\Documents\\myclass.com\\Siteweb\\Elyos_Ftion_Initiale\\Ela_back\\Back_Office_FI\\__dummy__', params='', query='', fragment=''), 'c' +DEBUG:xhtml2pdf.tags:Parsing img tag, src: +DEBUG:xhtml2pdf.tags:Attrs: {'src': , 'width': 75.0, 'height': None, 'align': None, 'id': None} +DEBUG:xhtml2pdf.files:Unrecognized scheme, assuming local file path +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 25 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 6645 +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None, None, None] +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:None +DEBUG:xhtml2pdf.tables:Col widths: [None, None] +DEBUG:PIL.PngImagePlugin:STREAM b'IHDR' 16 13 +DEBUG:PIL.PngImagePlugin:STREAM b'tEXt' 41 25 +DEBUG:PIL.PngImagePlugin:STREAM b'IDAT' 78 6645 +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:44:41] "GET /myclass/api/ManualSendInvoiceEmailRIB_CIC_BureauVallee/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:46:47.445192 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:46:47] "POST /myclass/api/partner_login/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:46:48.637091 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:46:48.643078 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:46:48.648080 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:46:48.655834 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:46:48.665308 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:46:48] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:46:48.715820 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:46:48.719721 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:46:48] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:46:48] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:46:48.729748 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:46:48] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:46:48.749727 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:46:48.761823 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:46:48] "POST /myclass/api/Get_List_Class_domaine/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:46:48.772820 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:46:48] "POST /myclass/api/Get_Ref_Pedagogique_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:46:48.794867 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:46:48] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:46:48] "POST /myclass/api/Get_List_Class_Categorie/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:46:48] "POST /myclass/api/Get_List_class_metier/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:46:48] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:46:48] "POST /myclass/api/find_partner_class_like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:48:37.352158 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:48:37.355583 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:48:37.357707 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:48:37.362227 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:37] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:48:37.367901 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:48:37.371541 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:48:37.376541 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:37] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:37] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:48:37.387543 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:37] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:48:37.393415 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:37] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:48:37.400482 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:37] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:48:37.405593 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:37] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:48:37.410509 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:37] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:37] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:37] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:37] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:38] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:48:40.403402 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:48:40.407264 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:48:40.409968 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:48:40.414249 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:48:40.416246 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:48:40.420246 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:40] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:48:40.429132 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:40] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:40] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:40] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:40] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:40] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:40] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:48:42.616057 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:48:42.620916 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:42] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:43] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:48:53.758487 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:48:53] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:49:06.620564 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:49:06] "POST /myclass/api/Get_List_Modele_Attestion_Formation_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:50:41.204863 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:50:41.208867 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:41] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:50:41.220494 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:50:41.225494 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:41] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:50:41.239508 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:41] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:41] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:50:41.404064 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:50:41.409469 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:50:41.414116 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:50:41.421698 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:41] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:50:41.429606 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:41] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:50:41.440114 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:41] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:50:41.444108 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:50:41.446109 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:41] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:41] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:50:41.459965 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:41] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:50:41.464973 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:41] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:50:41.472973 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:50:41.485491 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:41] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:41] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:41] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:42] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:50:43] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:51:17.674606 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:51:17.680602 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:51:17.689587 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:51:17.693605 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:51:17.702597 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:51:17.714823 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:51:17] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:51:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:51:17.741825 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:51:17] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:51:17] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:51:17] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:51:17] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:51:17] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:51:22.008235 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:51:22] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:51:26.294943 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:51:26] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:51:32.579039 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:51:32] "POST /myclass/api/Get_List_Modele_Attestion_Formation_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:52:29.247811 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:29] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:52:47.244810 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:52:47.247318 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:52:47.255386 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:47] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:52:47.273906 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:52:47.293902 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:47] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:47] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:47] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:52:47.314901 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:52:47.321901 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:52:47.324900 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:52:47.330904 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:47] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:52:47.349919 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:52:47.352922 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:47] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:52:47.367957 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:47] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:52:47.385953 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:47] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:47] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:47] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:52:47.411957 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:52:47.415954 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:52:47.423955 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:47] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:52:47.438952 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:47] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:47] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:47] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:48] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:52:50] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:53:23.571133 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:53:23.577142 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:53:23.585136 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:53:23.597144 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:53:23] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:53:23.605136 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:53:23] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:53:23] "POST /myclass/api/GetAllClassStagiaire/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:53:23.624143 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:53:23] "POST /myclass/api/GetSessionFormation/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:53:23.639134 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:53:23] "POST /myclass/api/Get_Session_Sequence_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:53:23] "POST /myclass/api/GetTableauEmargement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:53:23] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:53:26.717909 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:53:26] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:53:34.603595 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:53:34] "POST /myclass/api/Get_List_Modele_Attestion_Formation_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:54:13.420854 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:54:13] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:55:15.682022 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:55:15] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:55:39.776933 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:55:39] "POST /myclass/api/Get_List_Modele_Attestion_Formation_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:56:05.766172 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:56:05] "POST /myclass/api/Get_Attestion_By_Session/ HTTP/1.1" 200 - +INFO:root:2025-11-12 18:56:17.727260 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 18:56:17.736258 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:56:17] "POST /myclass/api/Get_List_Modele_Attestion_Formation_With_Filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 18:56:17] "POST /myclass/api/Get_Given_Class_List_Default_Documents_For_Given_Type_Doc/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:04:29.524201 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:04:29.533203 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:29] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:04:29.545203 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:04:29.553204 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:29] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:04:29.556201 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:29] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:29] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:04:29.599724 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:04:29.603728 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:04:29.606723 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:04:29.610723 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:04:29.615721 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:04:29.618724 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:29] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:29] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:29] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:04:29.630725 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:04:29.635725 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:29] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:29] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:04:29.643724 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:29] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:04:29.652726 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:04:29.667721 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:29] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:29] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:04:29.688826 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:29] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:30] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:04:30] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:07:12.960158 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:07:12.963159 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:07:12.965160 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:12] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:07:12.976219 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:12] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:07:12.986221 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:12] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:12] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:07:13.031219 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:07:13.033219 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:07:13.036218 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:07:13.039265 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:13] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:13] "POST /myclass/api/Get_Partner_Object_Specific_Valide_Displayed_Fields/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:07:13.047221 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:07:13.048222 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:13] "POST /myclass/api/Get_List_Ressource_Humaine_no_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:13] "POST /myclass/api/Get_List_Ressource_Materielle_no_filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:07:13.057220 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:07:13.061247 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:13] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:13] "POST /myclass/api/Get_List_Partner_Or_Default_session_step/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:07:13.070225 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:07:13.072226 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:07:13.076738 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:13] "POST /myclass/api/GetPartnerAttestation_Certificat/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:07:13.088737 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:13] "POST /myclass/api/Is_Partnair_Has_Digital_Signature/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:13] "POST /myclass/api/Get_List_Site_Formation_with_filter/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:13] "POST /myclass/api/get_partner_class/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:13] "POST /myclass/api/GetAllValideSessionPartner_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:14] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:07:21.570666 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:21] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:07:48.651667 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:07:48] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:19:29.788002 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:19:29] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:25:05.437956 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:25:05.443957 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:25:05.445957 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:25:05] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:25:05.456956 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:25:05.466951 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:25:05] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:25:05] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:25:05] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:25:05.485960 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:25:05] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:28:45.976669 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:28:45.980676 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:28:45.985674 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:28:45] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:28:45.994183 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:28:46.005698 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:28:46] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:28:46] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:28:46] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:28:46.031265 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:28:46] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:33:20.699836 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:33:20.708349 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:33:20] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:33:20.714351 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:33:20.721348 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:33:20] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:33:20] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:33:20.736350 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:33:20] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:33:20.753356 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:33:20] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:39:09.161634 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:39:09.172003 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:39:09] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:39:09.181001 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:39:09.197009 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:39:09] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:39:09] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:39:09.213044 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:root:2025-11-12 20:39:09.214042 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:39:09] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:39:09] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:50:27.344139 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:50:27.350308 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:50:27.354308 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:50:27] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:50:27.365215 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 20:50:27.376694 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:50:27] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:50:27] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:50:27] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:50:27.393587 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:50:27] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 20:51:26.222104 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:51:26] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/3Bll9zh0pefA-K_BToa9x99dBVJnVsXrZg/691478b1995b26cde9611ada HTTP/1.1" 200 - +INFO:root:2025-11-12 20:51:28.869555 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 20:51:28] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/3Bll9zh0pefA-K_BToa9x99dBVJnVsXrZg/691478b1995b26cde9611ada HTTP/1.1" 304 - +INFO:root:2025-11-12 21:57:18.946661 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 21:57:20] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 21:57:38.809760 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 21:57:38] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 21:57:43.644058 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 21:57:43.648551 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 21:57:43.654562 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 21:57:43] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:root:2025-11-12 21:57:43.668565 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 21:57:43.693915 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 21:57:43.699913 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 21:57:43.710918 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 21:57:43.717913 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 21:57:43] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 21:57:43] "POST /myclass/api/Get_List_Groupe_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 21:57:43] "POST /myclass/api/Get_List_Type_Pouvoir_Public/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 21:57:43] "POST /myclass/api/Get_List_Type_Organisme_Financement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 21:57:43] "POST /myclass/api/Get_List_Entity_Contact/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 21:57:43] "POST /myclass/api/Get_Given_Partner_Client_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 21:57:43] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 21:57:48.000364 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 21:57:48] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:00:06.539397 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:00:06.543394 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:00:06.548393 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:00:06.554396 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:00:06.561394 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:06] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:06] "POST /myclass/api/Get_List_Groupe_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:06] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:00:06.578394 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:06] "POST /myclass/api/Get_List_Type_Organisme_Financement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:06] "POST /myclass/api/Get_List_Type_Pouvoir_Public/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:00:06.583394 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:00:06.588377 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:06] "POST /myclass/api/Get_Given_Partner_Client_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:06] "POST /myclass/api/Get_List_Entity_Contact/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:06] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:00:40.735501 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:00:40.739501 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:00:40.743518 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:00:40.748503 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:00:40.753502 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:40] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:00:40.764501 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:40] "POST /myclass/api/Get_List_Groupe_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:40] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:00:40.773501 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:40] "POST /myclass/api/Get_List_Type_Pouvoir_Public/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:40] "POST /myclass/api/Get_List_Type_Organisme_Financement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:00:40.789506 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:40] "POST /myclass/api/Get_Given_Partner_Client_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:40] "POST /myclass/api/Get_List_Entity_Contact/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:00:40] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:02:39.331689 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:02:39.337439 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:02:39.342833 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:02:39.346829 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:02:39.350831 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:02:39] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:02:39] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:02:39.361830 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:02:39] "POST /myclass/api/Get_List_Groupe_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:02:39.374861 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:02:39] "POST /myclass/api/Get_List_Type_Pouvoir_Public/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:02:39] "POST /myclass/api/Get_List_Type_Organisme_Financement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:02:39.385832 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:02:39] "POST /myclass/api/Get_Given_Partner_Client_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:02:39] "POST /myclass/api/Get_List_Entity_Contact/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:02:39] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:03:16.464407 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:03:16.559985 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:03:16] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:03:16] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:08:03.065672 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:08:04] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:10:29.816888 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:10:29] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:11:03.524382 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:03] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:11:17.135837 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:17] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:11:27.859442 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:11:27.866443 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:27] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:11:27.874442 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:11:27.887441 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:11:27.892444 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:27] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:27] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:27] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:11:27.927443 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:30] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:11:35.011004 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:35] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:11:37.341694 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:11:37.348678 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:11:37.358243 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:11:37.366227 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:37] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:11:37.376225 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:37] "POST /myclass/api/Get_List_Groupe_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:37] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:11:37.389239 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:37] "POST /myclass/api/Get_List_Type_Organisme_Financement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:11:37.411225 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:37] "POST /myclass/api/Get_List_Type_Pouvoir_Public/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:37] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:11:37.427226 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:37] "POST /myclass/api/Get_Given_Partner_Client_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:37] "POST /myclass/api/Get_List_Entity_Contact/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:11:44.011395 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:11:44.140624 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:44] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:11:44] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:14:16.226337 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:16] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:14:26.714777 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:26] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:14:33.827974 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:33] "POST /myclass/api/getRecodedImage/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:14:33.838980 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:14:33.846486 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:14:33.857495 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:33] "POST /myclass/api/LMS_Get_Partner_Data/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:33] "POST /myclass/api/Get_Nb_User_Internal_Mail_Not_Read/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:14:33.883493 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:14:33.883493 : Connexion du partner recid = 43598820dd270936c3d2fd822717d0f18f194b1a1b894aaf89 OK. Mise à jour du firstconnexion et/ou lastconnexion : OK +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:33] "POST /myclass/api/get_partner_account/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:35] "POST /myclass/api/Get_Partner_List_Partner_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:14:40.760771 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:40] "POST /myclass/api/Get_Partner_List_Partner_Client_with_filter_Like/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:14:43.250827 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:14:43.252830 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:14:43.272378 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:14:43.278381 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:43] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:14:43.288380 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:43] "POST /myclass/api/Get_List_Groupe_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:43] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:14:43.295379 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:43] "POST /myclass/api/Get_List_Type_Organisme_Financement/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:14:43.307381 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:43] "POST /myclass/api/Get_List_Type_Pouvoir_Public/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:43] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:14:43.318379 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:43] "POST /myclass/api/Get_List_Entity_Contact/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:43] "POST /myclass/api/Get_Given_Partner_Client_From_Id/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:14:45.186382 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:14:45.272748 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:45] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:14:45] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:15:44.878687 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:15:44.882689 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:15:44.890685 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:15:44.893240 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:15:44] "POST /myclass/api/Get_List_Groupe_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:15:44.897803 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:15:44.906675 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:15:44] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:15:44] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:15:44.914681 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:15:44] "POST /myclass/api/Get_List_Type_Organisme_Financement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:15:44] "POST /myclass/api/Get_List_Type_Pouvoir_Public/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:15:44.929076 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:15:44] "POST /myclass/api/Get_Given_Partner_Client_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:15:44] "POST /myclass/api/Get_List_Entity_Contact/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:15:44] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:15:49.270794 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:15:49] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:15:49.354892 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:15:49] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:16:17.183232 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:16:17] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/3Bll9zh0pefA-K_BToa9x99dBVJnVsXrZg/68fb7dc779119ff4d421ae9a HTTP/1.1" 200 - +INFO:root:2025-11-12 22:16:21.047743 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:16:21] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/3Bll9zh0pefA-K_BToa9x99dBVJnVsXrZg/68fb7dc779119ff4d421ae9a HTTP/1.1" 304 - +INFO:root:2025-11-12 22:17:14.623948 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:14] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:17:17.913140 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:17] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:17:27.823797 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:27] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:17:30.240409 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:30] "GET /myclass/api/Get_Stored_Downloaded_File_From_Id/3Bll9zh0pefA-K_BToa9x99dBVJnVsXrZg/68984cc890ff4690b90d985d HTTP/1.1" 200 - +INFO:root:2025-11-12 22:17:38.513262 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:38] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:17:46.524819 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:17:46.527815 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:17:46.530838 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:17:46.536816 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:46] "POST /myclass/api/Get_List_Groupe_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:17:46.551819 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:46] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:46] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:17:46.560831 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:46] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:17:46.567845 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:17:46.572872 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:46] "POST /myclass/api/Get_List_Type_Organisme_Financement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:46] "POST /myclass/api/Get_List_Type_Pouvoir_Public/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:46] "POST /myclass/api/Get_Given_Partner_Client_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:46] "POST /myclass/api/Get_List_Entity_Contact/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:17:48.425235 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:48] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:17:48.525227 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:17:48] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:20:04.449902 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:04] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:20:48.760980 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:20:48.763022 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:20:48.769981 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:48] "POST /myclass/api/Get_List_Groupe_Client/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:48] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:20:48.779982 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:20:48.785980 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:20:48.789987 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:48] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:48] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:20:48.800991 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:20:48.805988 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:48] "POST /myclass/api/Get_List_Type_Organisme_Financement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:48] "POST /myclass/api/Get_List_Type_Pouvoir_Public/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:48] "POST /myclass/api/Get_Given_Partner_Client_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:48] "POST /myclass/api/Get_List_Entity_Contact/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:20:50.612677 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:50] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:20:50.700797 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:50] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:20:59.213180 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:20:59.214181 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:20:59.218182 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:20:59.222183 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:20:59.229200 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:59] "POST /myclass/api/Get_List_Groupe_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:20:59.235260 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:20:59.242236 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:59] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:59] "POST /myclass/api/Get_List_Type_Pouvoir_Public/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:59] "POST /myclass/api/Get_List_Type_Organisme_Financement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:59] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:20:59.255733 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:59] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:59] "POST /myclass/api/Get_Given_Partner_Client_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:20:59] "POST /myclass/api/Get_List_Entity_Contact/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:21:00.374421 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:21:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:21:00.480535 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:21:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:21:14.299467 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:21:14.301468 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:21:14.304470 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:21:14.307466 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:21:14] "POST /myclass/api/Get_Client_Type_List/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:21:14.315514 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:21:14.318922 : Security check : IP adresse '127.0.0.1' connected +INFO:root:2025-11-12 22:21:14.326950 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:21:14] "POST /myclass/api/Get_List_Type_Organisme_Financement/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:21:14] "POST /myclass/api/Get_List_Type_Pouvoir_Public/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:21:14] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:21:14] "POST /myclass/api/Get_List_Groupe_Client/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:21:14.343928 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:21:14] "POST /myclass/api/Get_List_Paiement_Condition/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:21:14] "POST /myclass/api/Get_Given_Partner_Client_From_Id/ HTTP/1.1" 200 - +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:21:14] "POST /myclass/api/Get_List_Entity_Contact/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:21:20.590202 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:21:20] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:21:20.676491 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:21:20] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:23:24.317864 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:23:24] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:23:48.628751 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:23:48] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:23:52.596826 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:23:52] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:23:56.081814 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:23:56] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:24:00.028426 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:24:00] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - +INFO:root:2025-11-12 22:24:07.779063 : Security check : IP adresse '127.0.0.1' connected +INFO:werkzeug:127.0.0.1 - - [12/Nov/2025 22:24:07] "POST /myclass/api/Get_List_object_owner_collection_Stored_Files_With_Filter/ HTTP/1.1" 200 - diff --git a/Session_Formation.py b/Session_Formation.py index 08ee1b0..d508865 100644 --- a/Session_Formation.py +++ b/Session_Formation.py @@ -6174,7 +6174,7 @@ def Prepare_and_Send_Convention_From_Session_By_Email(tab_files, Folder, diction - return True, " Les conventions ont été correctement envoyées par emails" + return True, " Les conventions ont été correctement envoyées par email" except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() @@ -6370,7 +6370,7 @@ def Prepare_and_Send_Convention_From_Session_For_Selected_Inscrit_By_Email(tab_f - return True, " Les conventions ont été correctement envoyées par emails" + return True, " Les conventions ont été correctement envoyées par email" except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() @@ -6694,7 +6694,7 @@ def Prepare_and_Send_Default_Convention_From_Session_By_Email(tab_files, Folder, tab_files_to_attache_to_mail = [] - return True, " Les conventions ont été correctement envoyées par emails" + return True, " Les conventions ont été correctement envoyées par email" except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() @@ -8038,7 +8038,7 @@ def Prepare_and_Send_Attestation_From_Session_By_PDF( diction): is_warning_message = "0" - warning_message = "Les attestation ont été correctement envoyées par emails avec l'attention suivante : " + warning_message = "Les attestation ont été correctement envoyées par email avec l'attention suivante : " for attestation_formation_data in MYSY_GV.dbname['attestation_formation'].find({ 'partner_owner_recid':str(my_partner['recid']), 'valide':"1", @@ -8608,7 +8608,7 @@ def Prepare_and_Send_Convocation_From_Session_By_Email(tab_files, Folder, dictio str(str(courrier_template_data['_id']))) - return True, " Les convocations ont été correctement envoyées par emails" + return True, " Les convocations ont été correctement envoyées par email" except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() @@ -8748,7 +8748,7 @@ def Prepare_and_Send_Convocation_From_Session_For_Selected_Inscrit_By_Email(tab_ str(str(courrier_template_data['_id']))) - return True, " Les convocations ont été correctement envoyées par emails" + return True, " Les convocations ont été correctement envoyées par email" except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() @@ -9005,7 +9005,7 @@ def Sent_Convocation_Stagiaire_By_Email(tab_files, Folder, diction): new_diction['list_class_id'] = tab_class new_diction['list_client_id'] = [] new_diction['list_apprenant_id'] = tab_apprenant - new_diction['list_sequence_session_id'] = tab_sequence_session # zzzzzz + new_diction['list_sequence_session_id'] = tab_sequence_session local_status, local_retval = mycommon.Get_Dictionnary_data_For_Template(new_diction) @@ -9224,9 +9224,32 @@ def Sent_Convocation_Stagiaire_By_Email(tab_files, Folder, diction): new_file['file_name_to_store'] = outputFilename + tab_key_word = "convocation,"+str(class_data['external_code'])+","+str(session_data['code_session']) + new_file['tab_key_word'] = tab_key_word + + tab_related_collection = [] + if( class_data): + node_class = {} + node_class['related_collection'] = 'myclass' + node_class['related_collection_id'] = str(class_data['_id']) + tab_related_collection.append(node_class) + + if (session_data): + node_session = {} + node_session['related_collection'] = 'session_formation' + node_session['related_collection_id'] = str(session_data['_id']) + tab_related_collection.append(node_session) + + if (inscription_data): + node_inscrit = {} + node_inscrit['related_collection'] = 'inscription' + node_inscrit['related_collection_id'] = str(inscription_data['_id']) + tab_related_collection.append(node_inscrit) + + #print(" ### new_file new_file = ", new_file) local_status, local_retval = attached_file_mgt.Internal_Usage_Store_User_Downloaded_File( - MYSY_GV.upload_folder, new_file) + MYSY_GV.upload_folder, new_file, tab_related_collection) if (local_status is False): print(" ## WARINNGGG Impossible de stocker le fichier de Convocation ") @@ -9345,7 +9368,7 @@ def Prepare_and_Send_Attestation_From_Session_By_Email(tab_files, Folder, dictio is_warning_message = "0" - warning_message = "Les attestation ont été correctement envoyées par emails avec l'attention suivante : " + warning_message = "Les attestation ont été correctement envoyées par email avec l'attention suivante : " for attestation_formation_data in MYSY_GV.dbname['attestation_formation'].find({"session_id":str(diction['session_id']), 'partner_owner_recid':str(my_partner['recid']), 'valide':"1", @@ -9421,7 +9444,7 @@ def Prepare_and_Send_Attestation_From_Session_By_Email(tab_files, Folder, dictio if( is_warning_message == "1"): return True, str(warning_message) - return True, " Les attestations ont été correctement envoyées par emails" + return True, " Les attestations ont été correctement envoyées par email" except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() @@ -9901,9 +9924,28 @@ def Sent_Attestation_Stagiaire_By_Email(tab_files, Folder, diction): new_file['file_name_to_store'] = outputFilename + tab_related_collection = [] + if (class_data): + node_class = {} + node_class['related_collection'] = 'myclass' + node_class['related_collection_id'] = str(class_data['_id']) + tab_related_collection.append(node_class) + + if (session_data): + node_session = {} + node_session['related_collection'] = 'session_formation' + node_session['related_collection_id'] = str(session_data['_id']) + tab_related_collection.append(node_session) + + if (inscription_data): + node_inscrit = {} + node_inscrit['related_collection'] = 'inscription' + node_inscrit['related_collection_id'] = str(inscription_data['_id']) + tab_related_collection.append(node_inscrit) + # print(" ### new_file new_file = ", new_file) local_status, local_retval = attached_file_mgt.Internal_Usage_Store_User_Downloaded_File( - MYSY_GV.upload_folder, new_file) + MYSY_GV.upload_folder, new_file, tab_related_collection) if (local_status is False): print(" ## WARNINGGG Impossible de stocker le fichier d'attestation") diff --git a/attached_file_mgt.py b/attached_file_mgt.py index 375a23f..3322dc2 100644 --- a/attached_file_mgt.py +++ b/attached_file_mgt.py @@ -86,7 +86,7 @@ def Store_User_Downloaded_File(file=None, Folder=None, diction=None): Verification des input acceptés """ field_list = ['token', 'file_business_object', 'file_name', 'status','object_owner_collection', - 'object_owner_id', 'type_document', 'metadata_field'] + 'object_owner_id', 'type_document', 'metadata_field', 'tab_key_word'] incom_keys = diction.keys() for val in incom_keys: if val not in field_list and val.startswith('my_') is False: @@ -159,6 +159,33 @@ def Store_User_Downloaded_File(file=None, Folder=None, diction=None): elif ( diction['metadata_field'] and str( diction['metadata_field'] ) <= 500 ) : metadata_field = diction['metadata_field'] + """ + La table des mots clés contient au max 5 mots, chanque mot ne doit pas faire plus 50 caracactères + """ + tab_key_word = [] + if ("tab_key_word" in diction.keys() and diction['tab_key_word']): + + tab_tmp = str(diction['tab_key_word']).replace(";", ",").split(",") + if (len(tab_tmp) > 5): + mycommon.myprint(str(inspect.stack()[0][3]) + " Il y a plus de 5 mots clés de recherche ") + return False, " Il y a plus de 5 mots clés de recherche " + + for tmp in tab_tmp: + if (tmp): + if (len(tmp) > 50): + mycommon.myprint( + str(inspect.stack()[0][3]) + "Le mot clé " + str(tmp) + " fait plus de 50 caractères") + return False, " Le mot clé " + str(tmp) + " fait plus de 50 caractères " + + tab_key_word.append(str(tmp)) + + tab_related_collection = [] + local_node = {} + local_node['related_collection'] = diction['object_owner_collection'] + local_node['related_collection_id'] = diction['object_owner_id'] + tab_related_collection.append(local_node) + + object_owner_id = "" if ("object_owner_id" in diction.keys()): @@ -185,6 +212,8 @@ def Store_User_Downloaded_File(file=None, Folder=None, diction=None): mydata['file_name'] = file.filename mydata['type_document'] = type_document mydata['metadata_field'] = metadata_field + mydata['tab_key_word'] = tab_key_word + mydata['tab_related_collection'] = tab_related_collection mydata['full_path'] = Global_file_name mydata['file_extention'] = file_extention mydata['object_owner_collection'] = object_owner_collection @@ -225,7 +254,7 @@ Important : : 24/12/2024 - metadata_field : est un champs de texte qui prends au maximum 500 caractère pour stocker des metadata pour effectuer des recherches """ -def Internal_Usage_Store_User_Downloaded_File(Folder=None, diction=None): +def Internal_Usage_Store_User_Downloaded_File(Folder=None, diction=None, tab_related_collection=None): try: full_file_path = "" @@ -235,7 +264,7 @@ def Internal_Usage_Store_User_Downloaded_File(Folder=None, diction=None): Verification des input acceptés """ field_list = ['token', 'file_business_object', 'file_name', 'status','object_owner_collection', 'object_owner_id', - 'file_name_to_store', 'type_document', 'metadata_field'] + 'file_name_to_store', 'type_document', 'metadata_field', 'tab_key_word'] incom_keys = diction.keys() for val in incom_keys: if val not in field_list and val.startswith('my_') is False: @@ -324,6 +353,35 @@ def Internal_Usage_Store_User_Downloaded_File(Folder=None, diction=None): if diction['document_display_order']: document_display_order = diction['document_display_order'] + + """ + La table des mots clés contient au max 5 mots, chanque mot ne doit pas faire plus 50 caracactères + """ + tab_key_word = [] + if ("tab_key_word" in diction.keys() and diction['tab_key_word']): + + tab_tmp = str(diction['tab_key_word']).replace(";", ",").split(",") + if (len(tab_tmp) > 5): + mycommon.myprint(str(inspect.stack()[0][3]) + " Il y a plus de 5 mots clés de recherche ") + return False, " Il y a plus de 5 mots clés de recherche " + + for tmp in tab_tmp: + if (tmp): + if (len(tmp) > 50): + mycommon.myprint( + str(inspect.stack()[0][3]) + "Le mot clé " + str(tmp) + " fait plus de 50 caractères") + return False, " Le mot clé " + str(tmp) + " fait plus de 50 caractères " + + tab_key_word.append(str(tmp)) + + + local_node = {} + local_node['related_collection'] = diction['object_owner_collection'] + local_node['related_collection_id'] = diction['object_owner_id'] + + tab_related_collection.append(local_node) + + mydata = {} mydata['file_business_object'] = file_business_object mydata['date_update'] = str(datetime.now()) @@ -331,6 +389,11 @@ def Internal_Usage_Store_User_Downloaded_File(Folder=None, diction=None): mydata['full_path'] = Global_file_name mydata['type_document'] = type_document mydata['metadata_field'] = metadata_field + + + mydata['tab_key_word'] = tab_key_word + mydata['tab_related_collection'] = tab_related_collection + mydata['file_extention'] = file_extention mydata['object_owner_collection'] = object_owner_collection mydata['object_owner_id'] = object_owner_id @@ -512,7 +575,10 @@ def Get_Stored_Downloaded_File_From_Id(diction): if diction['file_name']: file_name = diction['file_name'] - + if( not str(diction['_id']) ): + mycommon.myprint( + str(inspect.stack()[0][3]) + " L'identifiant du fichier est invalide ") + return False, " L'identifiant du fichier est invalide ", """ Verifier la validité de l'identifiant @@ -807,6 +873,11 @@ def Get_List_object_owner_collection_Stored_Files(diction): else: ret_file['file_extention'] = "file_extention" + if ("tab_key_word" in retval.keys()): + ret_file['tab_key_word'] = retval['tab_key_word'] + else: + ret_file['tab_key_word'] = [] + """ Recuperation du nom du client @@ -826,8 +897,87 @@ def Get_List_object_owner_collection_Stored_Files(diction): ret_file['client_raison_sociale'] = client_raison_sociale ret_file['client_nom'] = client_nom + tab_related_collection = [] + """ + 09/11/2025 - Traitement du contenu de la 'tab_related_collection' + - aller y chercher si on a un apprenant ou client ou un RH (les tuteurs par exemple) + """ + if ("tab_related_collection" in retval.keys() and retval['tab_related_collection']): + for tmp_data in retval['tab_related_collection']: + if ('related_collection' in tmp_data.keys() and tmp_data['related_collection'] and + 'related_collection_id' in tmp_data.keys() and tmp_data['related_collection_id']): + + if (tmp_data['related_collection'] == "partner_client" and tmp_data['related_collection_id']): + # Aller chercher les données du client + local_client_data = MYSY_GV.dbname['partner_client'].find_one( + {'_id': ObjectId(str(tmp_data['related_collection_id'])), + 'valide': '1', 'locked': '0', + 'partner_owner_recid': str(my_partner['recid'])}, + {'raison_sociale': 1, 'nom': 1, 'email': 1, '_id': 1}) + + local_node = {} + local_node['related_collection'] = 'partner_client' + local_node['related_collection_data'] = local_client_data + tab_related_collection.append(local_node) + + ret_file['related_client_nom'] = client_raison_sociale + elif (tmp_data['related_collection'] == "inscription" and tmp_data['related_collection_id']): + # Aller chercher les données de l'inscrit + + local_id = "" + + if type(tmp_data['related_collection_id']) == list: + local_id = tmp_data['related_collection_id'][0] + else: + local_id = tmp_data['related_collection_id'] + + local_inscrit_data = MYSY_GV.dbname['inscription'].find_one( + {'_id': ObjectId(str(local_id)), + 'valide': '1', 'locked': '0', + 'partner_owner_recid': str(my_partner['recid'])}, + {'prenom': 1, 'nom': 1, 'email': 1, '_id': 1}) + + local_node = {} + local_node['related_collection'] = 'inscription' + local_node['related_collection_data'] = local_inscrit_data + tab_related_collection.append(local_node) + + ret_file['related_inscrit_email'] = local_inscrit_data['email'] + + + elif (tmp_data['related_collection'] == "session_formation" and tmp_data['related_collection_id']): + # Aller chercher les données de la session + local_session_data = MYSY_GV.dbname['session_formation'].find_one( + {'_id': ObjectId(str(tmp_data['related_collection_id'])), + 'valide': '1', + 'partner_owner_recid': str(my_partner['recid'])}, + {'_id': 1, 'titre': 1, 'code_session': 1}) + + local_node = {} + local_node['related_collection'] = 'session_formation' + local_node['related_collection_data'] = local_session_data + tab_related_collection.append(local_node) + + ret_file['related_code_session'] = local_session_data['code_session'] + + elif (tmp_data['related_collection'] == "myclass" and tmp_data['related_collection_id']): + # Aller chercher les données de la formation + local_myclass_data = MYSY_GV.dbname['myclass'].find_one( + {'_id': ObjectId(str(tmp_data['related_collection_id'])), + 'valide': '1', 'locked': '0', + 'partner_owner_recid': str(my_partner['recid'])}, + {'_id': 1, 'external_code': 1, 'title': 1}) + + local_node = {} + local_node['related_collection'] = 'myclass' + local_node['related_collection_data'] = local_myclass_data + tab_related_collection.append(local_node) + + ret_file['related_ftion_external_code'] = local_myclass_data['external_code'] + + ret_file['tab_related_collection'] = tab_related_collection RetObject.append(mycommon.JSONEncoder().encode(ret_file)) nb_val = nb_val + 1 @@ -1028,7 +1178,7 @@ def Get_List_object_owner_collection_Stored_Files_With_Filter(diction): field_list = ['token', 'filter_object_owner_collection', 'filter_object_owner_id', 'filter_file_business_object', 'date_create_start_date', 'date_create_end_date', 'filter_type_document', 'filter_nom_client', 'filter_formation_external_code', 'filter_session_code', - 'filter_class_external_code'] + 'filter_class_external_code', 'filter_nom_prenom_mail_inscrit'] incom_keys = diction.keys() for val in incom_keys: @@ -1068,7 +1218,55 @@ def Get_List_object_owner_collection_Stored_Files_With_Filter(diction): filt_file_business_object = {} if ("filter_file_business_object" in diction.keys() and diction['filter_file_business_object']): filt_file_business_object = { - 'file_business_object': {'$regex': str(diction['filter_file_business_object']) , "$options": 'i'}} + 'file_business_object': {'$regex': mycommon.regex_replace_cartere(str(diction['filter_file_business_object'])) , "$options": 'i'}} + + + # Gestion du filtre sur le nom, prenom ou mail de l'inscrit + filt_nom_prenom_mail_inscrit = {} + tab_inscrit = [] + if( "filter_nom_prenom_mail_inscrit" in diction.keys() and diction['filter_nom_prenom_mail_inscrit']): + # Filtre sur le nom de l'inscrit + tmp_filt_inscrit_nom = { + 'nom': {'$regex': mycommon.regex_replace_cartere(str(diction['filter_nom_prenom_mail_inscrit'])) , "$options": 'i'}, + 'valide': '1', + 'locked': '0', + 'partner_owner_recid': str(my_partner['recid']) + } + + tmp_filt_inscrit_prenom = { + 'prenom': {'$regex': mycommon.regex_replace_cartere(str(diction['filter_nom_prenom_mail_inscrit'])), + "$options": 'i'}, + 'valide': '1', + 'locked': '0', + 'partner_owner_recid': str(my_partner['recid']) + } + + tmp_filt_inscrit_email = { + 'email': {'$regex': mycommon.regex_replace_cartere(str(diction['filter_nom_prenom_mail_inscrit'])), + "$options": 'i',}, + 'valide': '1', + 'locked': '0', + 'partner_owner_recid': str(my_partner['recid']) + } + qry_inscrit = {"$or": [ + tmp_filt_inscrit_nom, + tmp_filt_inscrit_prenom, + tmp_filt_inscrit_email]} + + + for inscrit_data in MYSY_GV.dbname['inscription'].find(qry_inscrit, {'_id':1}): + tab_inscrit.append(str(inscrit_data['_id'])) + + if(len(tab_inscrit) > 0 ): + filt_nom_prenom_mail_inscrit = {'tab_related_collection.related_collection':'inscription', + 'tab_related_collection.related_collection_id':{'$in': tab_inscrit }} + + print(" QEYYY = ", filt_nom_prenom_mail_inscrit) + + else: + # Aucun inscrit trouvé avec ce filtre de nom/prenom/mail, don on retourne vide + return True, [] + filt_object_owner_collection = {} @@ -1137,14 +1335,22 @@ def Get_List_object_owner_collection_Stored_Files_With_Filter(diction): filt_session_code = {} Lists_session_id = [] if ("filter_session_code" in diction.keys() and diction['filter_session_code']): - sub_filt_session_code = {'code_session': {'$regex': str(diction['filter_session_code']), "$options": "i"}, + sub_filt_session_code = {'code_session': {'$regex': mycommon.regex_replace_cartere(str(diction['filter_session_code'])), "$options": "i"}, 'partner_owner_recid': str(my_partner['recid']), 'valide': '1'} # Recuperation des '_id' des session dont le nom match en regexp for List_session_Data in MYSY_GV.dbname['session_formation'].find(sub_filt_session_code, {'_id': 1}): Lists_session_id.append(str(List_session_Data['_id'])) - filt_session_code = {'object_owner_id': {'$in': Lists_session_id, }} + if (len(Lists_session_id) <= 0): + # Aucun inscrit trouvé avec ce filtre, donc on retourne vide + return True, [] + + filt_session_code = {"$or": [{'object_owner_id': {'$in': Lists_session_id, }}, + {'tab_related_collection.related_collection':'session_formation', + 'tab_related_collection.related_collection_id':{'$in': Lists_session_id }} + ]} + """ @@ -1157,15 +1363,26 @@ def Get_List_object_owner_collection_Stored_Files_With_Filter(diction): """ filt_class_external_code = {} Lists_class_id = [] - if ("filter_class_external_code" in diction.keys() and diction['filter_class_external_code']): - sub_filt_class_external_code = {'external_code': {'$regex': str(diction['filter_class_external_code']), "$options": "i"}, + if ("filter_formation_external_code" in diction.keys() and diction['filter_formation_external_code']): + sub_filt_class_external_code = {'external_code': {'$regex': mycommon.regex_replace_cartere(str(diction['filter_formation_external_code'])), "$options": "i"}, 'partner_owner_recid': str(my_partner['recid']), 'valide': '1', 'locked':'0'} # Recuperation des '_id' des session dont le nom match en regexp + for List_class_Data in MYSY_GV.dbname['myclass'].find(sub_filt_class_external_code, {'_id': 1}): Lists_class_id.append(str(List_class_Data['_id'])) - filt_class_external_code = {'object_owner_id': {'$in': Lists_class_id, }} + if( len(Lists_class_id) <= 0 ): + # Aucun inscrit trouvé avec ce filtre, donc on retourne vide + return True, [] + + + filt_class_external_code = {"$or": [{'object_owner_id': {'$in': Lists_class_id, }}, + {'tab_related_collection.related_collection': 'myclass', + 'tab_related_collection.related_collection_id': {'$in': Lists_class_id}} + ]} + + print(" ## filt_class_external_code = ", filt_class_external_code) """ Gestion du filtre nom client. @@ -1174,7 +1391,7 @@ def Get_List_object_owner_collection_Stored_Files_With_Filter(diction): Lists_partner_client_id = [] if ("filter_nom_client" in diction.keys() and diction['filter_nom_client']): sub_filt_partner_client_nom = { - 'nom': {'$regex': str(diction['filter_nom_client']), "$options": "i"}, + 'nom': {'$regex': mycommon.regex_replace_cartere(str(diction['filter_nom_client'])), "$options": "i"}, 'partner_owner_recid': str(my_partner['recid']), 'valide': '1', 'locked': '0'} # Recuperation des '_id' des session dont le nom match en regexp @@ -1183,7 +1400,16 @@ def Get_List_object_owner_collection_Stored_Files_With_Filter(diction): for List_partner_client_Data in MYSY_GV.dbname['partner_client'].find(sub_filt_partner_client_nom, {'_id': 1}): Lists_partner_client_id.append(str(List_partner_client_Data['_id'])) - filt_partner_client_nom = {'object_owner_id': {'$in': Lists_partner_client_id, }} + if (len(Lists_partner_client_id) <= 0): + # Aucun inscrit trouvé avec ce filtre, donc on retourne vide + return True, [] + + filt_partner_client_nom = {"$or": [{'object_owner_id': {'$in': Lists_partner_client_id, }}, + {'tab_related_collection.related_collection': 'partner_client', + 'tab_related_collection.related_collection_id': { + '$in': Lists_partner_client_id}} + ]} + """ @@ -1217,7 +1443,7 @@ def Get_List_object_owner_collection_Stored_Files_With_Filter(diction): my_query = {'$and': [ filt_object_owner_collection, filt_filter_object_owner_id, filt_date_creation, filt_type_document, filt_session_code,filt_partner_client_nom, filt_file_business_object, - filt_class_external_code, {'partner_owner_recid': str(my_partner['recid']), + filt_class_external_code, filt_nom_prenom_mail_inscrit, {'partner_owner_recid': str(my_partner['recid']), 'valide':'1'}]} new_query = ([ {"$addFields": { @@ -1292,6 +1518,11 @@ def Get_List_object_owner_collection_Stored_Files_With_Filter(diction): else: ret_file['file_extention'] = "file_extention" + if ("tab_key_word" in retval.keys()): + ret_file['tab_key_word'] = retval['tab_key_word'] + else: + ret_file['tab_key_word'] = [] + """ Recuperation du nom du client """ @@ -1311,6 +1542,88 @@ def Get_List_object_owner_collection_Stored_Files_With_Filter(diction): ret_file['client_raison_sociale'] = client_raison_sociale ret_file['client_nom'] = client_nom + tab_related_collection = [] + """ + 09/11/2025 - Traitement du contenu de la 'tab_related_collection' + - aller y chercher si on a un apprenant ou client ou un RH (les tuteurs par exemple) + """ + if( "tab_related_collection" in retval.keys() and retval['tab_related_collection']): + for tmp_data in retval['tab_related_collection']: + if( 'related_collection' in tmp_data.keys() and tmp_data['related_collection'] and + 'related_collection_id' in tmp_data.keys() and tmp_data['related_collection_id']): + + if( tmp_data['related_collection'] == "partner_client" and tmp_data['related_collection_id']): + # Aller chercher les données du client + local_client_data = MYSY_GV.dbname['partner_client'].find_one({'_id':ObjectId(str(tmp_data['related_collection_id'])), + 'valide':'1', 'locked':'0', + 'partner_owner_recid':str(my_partner['recid'])}, + {'raison_sociale':1, 'nom':1, 'email':1, '_id':1}) + + + local_node = {} + local_node['related_collection'] = 'partner_client' + local_node['related_collection_data'] = local_client_data + tab_related_collection.append(local_node) + + ret_file['related_client_nom'] = client_raison_sociale + + + elif( tmp_data['related_collection'] == "inscription" and tmp_data['related_collection_id']): + + local_id = "" + + if type(tmp_data['related_collection_id']) == list: + local_id = tmp_data['related_collection_id'][0] + else: + local_id = tmp_data['related_collection_id'] + + # Aller chercher les données de l'inscrit + local_inscrit_data = MYSY_GV.dbname['inscription'].find_one( + {'_id': ObjectId(str(local_id)), + 'valide': '1', 'locked': '0', + 'partner_owner_recid': str(my_partner['recid'])}, + {'prenom': 1, 'nom': 1, 'email': 1, '_id':1}) + + local_node = {} + local_node['related_collection'] = 'inscription' + local_node['related_collection_data'] = local_inscrit_data + tab_related_collection.append(local_node) + + ret_file['related_inscrit_email'] = local_inscrit_data['email'] + + + elif (tmp_data['related_collection'] == "session_formation" and tmp_data['related_collection_id']): + # Aller chercher les données de la session + local_session_data = MYSY_GV.dbname['session_formation'].find_one( + {'_id': ObjectId(str(tmp_data['related_collection_id'])), + 'valide': '1', + 'partner_owner_recid': str(my_partner['recid'])}, + {'_id': 1, 'titre': 1, 'code_session': 1}) + + local_node = {} + local_node['related_collection'] = 'session_formation' + local_node['related_collection_data'] = local_session_data + tab_related_collection.append(local_node) + + ret_file['related_code_session'] = local_session_data['code_session'] + + elif (tmp_data['related_collection'] == "myclass" and tmp_data['related_collection_id']): + # Aller chercher les données de la formation + local_myclass_data = MYSY_GV.dbname['myclass'].find_one( + {'_id': ObjectId(str(tmp_data['related_collection_id'])), + 'valide': '1', 'locked':'0', + 'partner_owner_recid': str(my_partner['recid'])}, + {'_id': 1, 'external_code': 1, 'title': 1}) + + local_node = {} + local_node['related_collection'] = 'myclass' + local_node['related_collection_data'] = local_myclass_data + tab_related_collection.append(local_node) + + ret_file['related_ftion_external_code'] = local_myclass_data['external_code'] + + ret_file['tab_related_collection'] = tab_related_collection + RetObject.append(mycommon.JSONEncoder().encode(ret_file)) nb_val = nb_val + 1 @@ -1329,7 +1642,6 @@ Cette fonction permet de recuperer une liste de documents avec plusieurs filtre """ - def Get_List_object_owner_collection_Stored_Files_With_Filter_No_Token(diction): try: @@ -1464,6 +1776,12 @@ def Get_List_object_owner_collection_Stored_Files_With_Filter_No_Token(diction): else: ret_file['file_extention'] = "file_extention" + if ("tab_key_word" in retval.keys()): + ret_file['tab_key_word'] = retval['tab_key_word'] + else: + ret_file['tab_key_word'] = [] + + """ Recuperation du nom du client """ @@ -1483,6 +1801,88 @@ def Get_List_object_owner_collection_Stored_Files_With_Filter_No_Token(diction): ret_file['client_raison_sociale'] = client_raison_sociale ret_file['client_nom'] = client_nom + tab_related_collection = [] + """ + 09/11/2025 - Traitement du contenu de la 'tab_related_collection' + - aller y chercher si on a un apprenant ou client ou un RH (les tuteurs par exemple) + """ + if ("tab_related_collection" in retval.keys() and retval['tab_related_collection']): + for tmp_data in retval['tab_related_collection']: + if ('related_collection' in tmp_data.keys() and tmp_data['related_collection'] and + 'related_collection_id' in tmp_data.keys() and tmp_data['related_collection_id']): + + if (tmp_data['related_collection'] == "partner_client" and tmp_data['related_collection_id']): + # Aller chercher les données du client + local_client_data = MYSY_GV.dbname['partner_client'].find_one( + {'_id': ObjectId(str(tmp_data['related_collection_id'])), + 'valide': '1', 'locked': '0', + 'partner_owner_recid': str(ret_file['partner_owner_recid'])}, + {'raison_sociale': 1, 'nom': 1, 'email': 1, '_id': 1}) + + local_node = {} + local_node['related_collection'] = 'partner_client' + local_node['related_collection_data'] = local_client_data + tab_related_collection.append(local_node) + + ret_file['related_client_nom'] = client_raison_sociale + + + elif (tmp_data['related_collection'] == "inscription" and tmp_data['related_collection_id']): + # Aller chercher les données de l'inscrit + + local_id = "" + + if type(tmp_data['related_collection_id']) == list: + local_id = tmp_data['related_collection_id'][0] + else: + local_id = tmp_data['related_collection_id'] + + local_inscrit_data = MYSY_GV.dbname['inscription'].find_one( + {'_id': ObjectId(str(local_id)), + 'valide': '1', 'locked': '0', + 'partner_owner_recid': str(ret_file['partner_owner_recid'])}, + {'prenom': 1, 'nom': 1, 'email': 1, '_id': 1}) + + local_node = {} + local_node['related_collection'] = 'inscription' + local_node['related_collection_data'] = local_inscrit_data + tab_related_collection.append(local_node) + + ret_file['related_inscrit_email'] = local_inscrit_data['email'] + + + elif (tmp_data['related_collection'] == "session_formation" and tmp_data['related_collection_id']): + # Aller chercher les données de la session + local_session_data = MYSY_GV.dbname['session_formation'].find_one( + {'_id': ObjectId(str(tmp_data['related_collection_id'])), + 'valide': '1', + 'partner_owner_recid': str(ret_file['partner_owner_recid'])}, + {'_id': 1, 'titre': 1, 'code_session': 1}) + + local_node = {} + local_node['related_collection'] = 'session_formation' + local_node['related_collection_data'] = local_session_data + tab_related_collection.append(local_node) + + ret_file['related_code_session'] = local_session_data['code_session'] + + elif (tmp_data['related_collection'] == "myclass" and tmp_data['related_collection_id']): + # Aller chercher les données de la formation + local_myclass_data = MYSY_GV.dbname['myclass'].find_one( + {'_id': ObjectId(str(tmp_data['related_collection_id'])), + 'valide': '1', 'locked': '0', + 'partner_owner_recid': str(ret_file['partner_owner_recid'])}, + {'_id': 1, 'external_code': 1, 'title': 1}) + + local_node = {} + local_node['related_collection'] = 'myclass' + local_node['related_collection_data'] = local_myclass_data + tab_related_collection.append(local_node) + + ret_file['related_ftion_external_code'] = local_myclass_data['external_code'] + + ret_file['tab_related_collection'] = tab_related_collection + RetObject.append(mycommon.JSONEncoder().encode(ret_file)) nb_val = nb_val + 1 diff --git a/base_class_calcul_note.py b/base_class_calcul_note.py index 7601f62..6c0fe9e 100644 --- a/base_class_calcul_note.py +++ b/base_class_calcul_note.py @@ -431,6 +431,7 @@ def Cacul_UE_Note_By_Evaluation_Type(diction): print(" QRYY = ", {'partner_owner_recid': str(my_partner['recid']), 'valide': '1', 'locked': '0', + 'session_id': str(diction['session_id']), 'class_id': str(diction['class_id']), 'class_eu_id': str(diction['ue_id']), 'type_eval_id': str(evaluation_type_id)} ) @@ -439,6 +440,7 @@ def Cacul_UE_Note_By_Evaluation_Type(diction): for val in MYSY_GV.dbname['note_evaluation'].find({'partner_owner_recid': str(my_partner['recid']), 'valide': '1', 'locked': '0', + 'session_id': str(diction['session_id']), 'class_id': str(diction['class_id']), 'class_eu_id': str(diction['ue_id']), 'type_eval_id': str(evaluation_type_id)}): @@ -492,8 +494,6 @@ def Cacul_UE_Note_By_Evaluation_Type(diction): moyenne_note = round(somme_note / nb_eval, 2) - - else : moyenne_note = "-" somme_note = "-" @@ -806,14 +806,14 @@ def Cacul_UE_Note_Finale_For_calcul_mode_1(diction): classement = 0 note_precedente = "" - for sorted_data in MYSY_GV.dbname['session_formation_final_note_classement'].find(basic_qry).sort([("note_finale", pymongo.DESCENDING), ]): + for sorted_data in MYSY_GV.dbname['session_formation_final_note_classement'].find(basic_qry).sort([("note_finale", pymongo.DESCENDING), ]).collation({'locale': "fr", 'numericOrdering': True}): # Gestion des Execo if( str(note_precedente) != str(sorted_data['note_finale'])): classement = classement + 1 note_precedente = str(sorted_data['note_finale']) #MAJ du rang - #print(" MAJJ classement = ", classement) + #print(" MAJJ classement 0222 = ", classement) MYSY_GV.dbname['session_formation_final_note_classement'].find_one_and_update( {'_id':ObjectId(str(sorted_data['_id'])), 'partner_owner_recid':str(sorted_data['partner_owner_recid']), @@ -1258,9 +1258,9 @@ def Get_List_Evaluation_Inscriptio_Note_Classement_With_Filter(diction): """ -Cette fonction va calculer moyenne par session (formation) +Cette fonction va calculer la moyenne par session (formation) -Précedemment les calculs se faisaient pas UE, a présent nous allons faire le calcul par formation. +Précedemment les calculs se faisaient par UE, a présent nous allons faire le calcul par formation. Calcul selon la règle : - [ UE * Coef (UE) ] / nb_coef @@ -1343,16 +1343,31 @@ def Cacul_Session_Note_Finale_For_calcul_mode_1(diction): 'partner_owner_recid': str(my_partner['recid'])}) """ - Recuperer la liste des UE de la formation, avec leur credit et coeff.* + Recuperer la liste des UE qui sont sur la session / promotion, avec leur credit et coeff.* """ tab_class_ue = [] - if( "list_unite_enseignement" in is_myclass_valide_data.keys() ): - tab_class_ue = is_myclass_valide_data['list_unite_enseignement'] + if( "list_unite_enseignement" in is_session_valide_data.keys() ): + for tmp_tab_session_ue in is_session_valide_data['list_unite_enseignement']: + + if( tmp_tab_session_ue and '_id' in tmp_tab_session_ue.keys() ): + local_class_eu = MYSY_GV.dbname['myclass'].find_one( + {'_id': ObjectId(str(diction['class_id'])), + 'valide': '1', + 'locked': '0', + 'partner_owner_recid': str(my_partner['recid']), + 'list_unite_enseignement._id': str(tmp_tab_session_ue['_id'])}, + { 'list_unite_enseignement.$': 1}) + + + + tab_class_ue.append(local_class_eu['list_unite_enseignement'][0]) + if(len(tab_class_ue) <= 0 ): mycommon.myprint( - str(inspect.stack()[0][3]) + " Aucune unité d'enseignement pour cette formation ") - return False, " Aucune unité d'enseignement pour cette formation " + str(inspect.stack()[0][3]) + " Aucune unité d'enseignement pour cette promotion / session ") + return False, " Aucune unité d'enseignement pour cette promotion / session " + # Verifier la validité de la liste des inscrits fournie @@ -1393,6 +1408,7 @@ def Cacul_Session_Note_Finale_For_calcul_mode_1(diction): session_somme_credit_acquis = 0 for class_ue in tab_class_ue : + for tmps_data in MYSY_GV.dbname['session_formation_final_note_classement'].find({'partner_owner_recid':str(my_partner['recid']), 'ue_id':str(class_ue['_id']), 'inscription_id':str(my_inscription), @@ -1450,7 +1466,7 @@ def Cacul_Session_Note_Finale_For_calcul_mode_1(diction): 'session_id':str(is_session_valide_data['_id']), 'valide': '1', 'locked': '0' }).sort( - [("note_finale", pymongo.DESCENDING), ]): + [("note_finale", pymongo.DESCENDING), ]).collation({'locale': "fr", 'numericOrdering': True}): if( sorted_data and "note_finale" in sorted_data.keys() ): # Gestion des Execo @@ -1624,7 +1640,6 @@ def Calcul_Note_Classement_Session(diction): 'session_id':str(is_session_valide_data['_id'])}): tab_inscrit_id.append(str(inscrit['_id'])) - print(" ### str(is_session_valide_data['class_internal_url']) = ", str(is_session_valide_data['class_internal_url'])) is_class_data = MYSY_GV.dbname['myclass'].find_one({'internal_url':str(is_session_valide_data['class_internal_url']), 'valide':'1', @@ -1635,12 +1650,15 @@ def Calcul_Note_Classement_Session(diction): Preparation des calculs """ - # On recupere la liste des ue_id de la formation + # On recupere la liste des ue_id de la promotion tab_ue_id = [] - for class_class_ue_data in is_class_data['list_unite_enseignement'] : + for class_class_ue_data in is_session_valide_data['list_unite_enseignement'] : tab_ue_id.append( str(class_class_ue_data['_id'])) + print(" ### ooooo tab_ue_id = ", tab_ue_id) + + local_diction = {} local_diction['token'] = str(diction['token']) local_diction['class_id'] = str(is_class_data['_id']) @@ -1668,75 +1686,88 @@ def Calcul_Note_Classement_Session(diction): """ for class_class_ue_data in is_class_data['list_unite_enseignement'] : - unite_enseignement_data = MYSY_GV.dbname['unite_enseignement'].find_one( - {'_id': ObjectId(str(class_class_ue_data['_id'])), - 'valide': '1', - 'locked': '0', - }) + """ + Verifier si cette UE est sur la session / promotion + """ + is_ue_in_session_count = MYSY_GV.dbname['session_formation'].count_documents({'_id':ObjectId(str(diction['session_id'])), + 'valide':'1', + 'partner_owner_recid':str(my_partner['recid']), + 'list_unite_enseignement._id':str(class_class_ue_data['_id'])}) - note_ue_calculation_rule_id = "" - if( "note_ue_calculation_rule_id" in unite_enseignement_data.keys() and unite_enseignement_data['note_ue_calculation_rule_id']): - - note_ue_calculation_rule_id = unite_enseignement_data['note_ue_calculation_rule_id'] - - if( note_ue_calculation_rule_id == ""): - mycommon.myprint( - str(inspect.stack()[0][3]) + " L'unité d'enseignement "+str(unite_enseignement_data['code'])+" n'a pas de règle de calcul de la note") - return False, " L'unité d'enseignement "+str(unite_enseignement_data['code'])+" n'a pas de règle de calcul de la note" - - base_calcul_note_class_and_ue_data = MYSY_GV.dbname['base_calcul_note_class_and_ue'].find_one({'_id':ObjectId(str(unite_enseignement_data['note_ue_calculation_rule_id'])), - 'valide':'1', - 'locked':'0', - 'related_collection':'unite_enseignement'}) - - ue_calcul_fonction_name = "" - if ("fonction_name" in base_calcul_note_class_and_ue_data.keys() and base_calcul_note_class_and_ue_data['fonction_name']): - ue_calcul_fonction_name = base_calcul_note_class_and_ue_data['fonction_name'] - - if (ue_calcul_fonction_name == ""): - mycommon.myprint( - str(inspect.stack()[0][3]) + " L'unité d'enseignement " + str( - unite_enseignement_data['code']) + " n'a pas de règle de calcul de la note (2) ") - return False, " L'unité d'enseignement " + str( - unite_enseignement_data['code']) + " n'a pas de règle de calcul de la note (2) " - - local_coef = "1" - if( "coefficient" in class_class_ue_data.keys() and class_class_ue_data['coefficient'] ): - local_coef = class_class_ue_data['coefficient'] - - local_seuil_validation = "10" - if ("seuil_validation" in class_class_ue_data.keys() and class_class_ue_data['seuil_validation']): - local_seuil_validation = class_class_ue_data['seuil_validation'] - print(" ### Pour l'UE : ",str(unite_enseignement_data['code']), - " Coef : ", local_coef, - " seuil validation : ", local_seuil_validation) - print(" ### la formule de calcul est : ", base_calcul_note_class_and_ue_data['fonction_name']) - - #field_list = ['token', 'class_id', 'session_id', 'ue_id', 'tab_inscriptions_ids',] - local_node = {} - local_node['token'] = str(diction['token']) - local_node['class_id'] = str(is_class_data['_id']) - local_node['session_id'] = str(diction['session_id']) - local_node['tab_ue_ids'] = str(unite_enseignement_data['_id']) - - list_inscrit_id = ",".join(tab_inscrit_id) - local_node['tab_inscriptions_ids'] = str(list_inscrit_id) + if( is_ue_in_session_count > 0 ): + unite_enseignement_data = MYSY_GV.dbname['unite_enseignement'].find_one( + {'_id': ObjectId(str(class_class_ue_data['_id'])), + 'valide': '1', + 'locked': '0', + }) - possibles = globals().copy() - possibles.update(locals()) - cron_function = possibles.get(base_calcul_note_class_and_ue_data['fonction_name']) + note_ue_calculation_rule_id = "" + if( "note_ue_calculation_rule_id" in unite_enseignement_data.keys() and unite_enseignement_data['note_ue_calculation_rule_id']): - if not cron_function: - mycommon.myprint(str( - inspect.stack()[0][3]) + " Fonction '" + str(base_calcul_note_class_and_ue_data['fonction_name']) + "' est introuvable") + note_ue_calculation_rule_id = unite_enseignement_data['note_ue_calculation_rule_id'] - print(" Exécution de la fonction : UE de Session = ", base_calcul_note_class_and_ue_data['fonction_name']) - local_status, local_retval = cron_function(local_node) + if( note_ue_calculation_rule_id == ""): + mycommon.myprint( + str(inspect.stack()[0][3]) + " L'unité d'enseignement "+str(unite_enseignement_data['code'])+" n'a pas de règle de calcul de la note") + return False, " L'unité d'enseignement "+str(unite_enseignement_data['code'])+" n'a pas de règle de calcul de la note" + + base_calcul_note_class_and_ue_data = MYSY_GV.dbname['base_calcul_note_class_and_ue'].find_one({'_id':ObjectId(str(unite_enseignement_data['note_ue_calculation_rule_id'])), + 'valide':'1', + 'locked':'0', + 'related_collection':'unite_enseignement'}) + + ue_calcul_fonction_name = "" + if ("fonction_name" in base_calcul_note_class_and_ue_data.keys() and base_calcul_note_class_and_ue_data['fonction_name']): + ue_calcul_fonction_name = base_calcul_note_class_and_ue_data['fonction_name'] + + if (ue_calcul_fonction_name == ""): + mycommon.myprint( + str(inspect.stack()[0][3]) + " L'unité d'enseignement " + str( + unite_enseignement_data['code']) + " n'a pas de règle de calcul de la note (2) ") + return False, " L'unité d'enseignement " + str( + unite_enseignement_data['code']) + " n'a pas de règle de calcul de la note (2) " + + local_coef = "1" + if( "coefficient" in class_class_ue_data.keys() and class_class_ue_data['coefficient'] ): + local_coef = class_class_ue_data['coefficient'] + + local_seuil_validation = "10" + if ("seuil_validation" in class_class_ue_data.keys() and class_class_ue_data['seuil_validation']): + local_seuil_validation = class_class_ue_data['seuil_validation'] + + + print(" ### Pour l'UE : ",str(unite_enseignement_data['code']), + " Coef : ", local_coef, + " seuil validation : ", local_seuil_validation) + + print(" ### la formule de calcul est : ", base_calcul_note_class_and_ue_data['fonction_name']) + + #field_list = ['token', 'class_id', 'session_id', 'ue_id', 'tab_inscriptions_ids',] + local_node = {} + local_node['token'] = str(diction['token']) + local_node['class_id'] = str(is_class_data['_id']) + local_node['session_id'] = str(diction['session_id']) + local_node['tab_ue_ids'] = str(unite_enseignement_data['_id']) + + list_inscrit_id = ",".join(tab_inscrit_id) + local_node['tab_inscriptions_ids'] = str(list_inscrit_id) + + + possibles = globals().copy() + possibles.update(locals()) + cron_function = possibles.get(base_calcul_note_class_and_ue_data['fonction_name']) + + if not cron_function: + mycommon.myprint(str( + inspect.stack()[0][3]) + " Fonction '" + str(base_calcul_note_class_and_ue_data['fonction_name']) + "' est introuvable") + + print(" Exécution de la fonction : UE de Session = ", base_calcul_note_class_and_ue_data['fonction_name']) + local_status, local_retval = cron_function(local_node) class_function_note_calcul_rule = "" @@ -1823,6 +1854,8 @@ def Cacul_UE_Note_Finale_Standard(diction): str(inspect.stack()[0][3]) + " - La valeur '" + val + "' n'est pas presente dans la liste des arguments ") return False, " Les informations fournies sont incorrectes" + + print(" ## diction ) diction = ", diction) """ Verification de l'identité et autorisation de l'entité qui appelle cette API @@ -2145,7 +2178,7 @@ def Cacul_UE_Note_Finale_Standard(diction): note_precedente = "" for sorted_data in MYSY_GV.dbname['session_formation_final_note_classement'].find(basic_qry).sort( - [("note_finale", pymongo.DESCENDING), ]): + [("note_finale", pymongo.DESCENDING), ]).collation({'locale': "fr", 'numericOrdering': True}): #print(" ### sorted_data = ", sorted_data) # Gestion des Execo @@ -2230,7 +2263,6 @@ def Cacul_UE_Note_Finale_Standard(diction): node_note_categorie_session_ue['note_categorie_code'] = val['code'] node_note_categorie_session_ue['pourcentage'] = "0" - print(" ### node_note_categorie_session_ue = ", node_note_categorie_session_ue) data_key = {} data_key['ue_id'] = str(local_ue) @@ -2252,13 +2284,12 @@ def Cacul_UE_Note_Finale_Standard(diction): tab_data = [] for retval in MYSY_GV.dbname['session_formation_final_note_classement'].aggregate(pipe_qry): - print(" ### retval ici pipe_qry = ", retval) + ## Calcul du nombre total d'inscrit pour cette UE total_personne = MYSY_GV.dbname['session_formation_final_note_classement'].count_documents({'partner_owner_recid':str(my_partner['recid']), 'session_id':str(retval['_id']['session_id']), 'ue_id':str(retval['_id']['ue_id'])}) - print(" ### total_personne pour UE ("+str(str(retval['_id']['ue_id']))+") = ", total_personne) node_note_categorie_session_ue = {} node_note_categorie_session_ue['partner_owner_recid'] = str(my_partner['recid']) @@ -2446,21 +2477,55 @@ def run_ue_pre_calcul_moyenne_somme_v2(diction): for my_ue_id in tab_ue_ids_splited: my_ue_id = str(my_ue_id).strip() + print(" ## TGGT my_ue_id = ", my_ue_id) + my_ue_id_data = MYSY_GV.dbname['unite_enseignement'].find_one( {'_id': ObjectId(str(my_ue_id)), 'valide': '1', 'locked': '0', 'partner_owner_recid': str(my_partner['recid'])}) + + + """ + 08/11/2025 + Enveler de cette liste, les type d'evaluation qui sont pas configurée sur la formation. + """ + Class_UE_type_eval = MYSY_GV.dbname['class_unite_enseignement_type_evaluation'].distinct( + "type_evaluation_id", + {'class_ue_id': str(my_ue_id), + 'valide': '1', + 'locked': '0', + 'class_id': str( + diction['class_id']), + 'partner_owner_recid': str( + my_partner['recid']) + } + ) + + print(" ### la liste Class_UE_type_eval = ", Class_UE_type_eval) + + print(" ### QRYYY = ", {'class_eu_id': str(my_ue_id), + 'valide': '1', + 'locked': '0', + 'session_id':str(diction['session_id']), + 'partner_owner_recid': str(my_partner['recid']), + 'type_eval_id':{'$in':Class_UE_type_eval} + }) + evaluation_distinc_type_eval = MYSY_GV.dbname['note_evaluation'].distinct("type_eval_id", {'class_eu_id': str(my_ue_id), 'valide': '1', 'locked': '0', - 'partner_owner_recid': str(my_partner['recid']) + 'session_id':str(diction['session_id']), + 'partner_owner_recid': str(my_partner['recid']), + 'type_eval_id':{'$in':Class_UE_type_eval} } ) - #print(" ### la liste evaluation_distinc_type_eval = ", evaluation_distinc_type_eval) + + + print(" ### la liste evaluation_distinc_type_eval = ", evaluation_distinc_type_eval) @@ -2488,7 +2553,7 @@ def run_ue_pre_calcul_moyenne_somme_v2(diction): ############ """ - Traitement des Types d'evaluation + Traitement des Types d'évaluation """ for eval_type_id in evaluation_distinc_type_eval : @@ -2529,6 +2594,11 @@ def run_ue_pre_calcul_moyenne_somme_v2(diction): new_node['nb_evaluation'] = str(local_retval_nb_eval_TD) # Recuperer la ponderation associé à ce type d'evaluation + print(" ## QRY class_unite_enseignement_type_evaluation_data = ", {'class_id':str(diction['class_id']), + 'type_evaluation_id': str(eval_type_id_data["_id"]), + 'class_ue_id': str(my_ue_id), + }) + class_unite_enseignement_type_evaluation_data = MYSY_GV.dbname['class_unite_enseignement_type_evaluation'].find_one({'class_id':str(diction['class_id']), 'type_evaluation_id': str(eval_type_id_data["_id"]), 'class_ue_id': str(my_ue_id), @@ -2671,16 +2741,29 @@ def Cacul_Session_Note_Finale_For_calcul_Stanard(diction): 'partner_owner_recid': str(my_partner['recid'])}) """ - Recuperer la liste des UE de la formation, avec leur credit et coeff.* + Recuperer la liste des UE qui sont sur la session / promotion, avec leur credit et coeff.* """ tab_class_ue = [] - if( "list_unite_enseignement" in is_myclass_valide_data.keys() ): - tab_class_ue = is_myclass_valide_data['list_unite_enseignement'] + if( "list_unite_enseignement" in is_session_valide_data.keys() ): + for tmp_tab_session_ue in is_session_valide_data['list_unite_enseignement']: + print(" ## tmp_tab_session_ue = ", tmp_tab_session_ue) + + if (tmp_tab_session_ue and '_id' in tmp_tab_session_ue.keys()): + local_class_eu = MYSY_GV.dbname['myclass'].find_one( + {'_id': ObjectId(str(diction['class_id'])), + 'valide': '1', + 'locked': '0', + 'partner_owner_recid': str(my_partner['recid']), + 'list_unite_enseignement._id': str(tmp_tab_session_ue['_id'])}, + {'list_unite_enseignement.$': 1}) + + tab_class_ue.append(local_class_eu['list_unite_enseignement'][0]) + if(len(tab_class_ue) <= 0 ): mycommon.myprint( - str(inspect.stack()[0][3]) + " Aucune unité d'enseignement pour cette formation ") - return False, " Aucune unité d'enseignement pour cette formation " + str(inspect.stack()[0][3]) + " Aucune unité d'enseignement pour cette promotion / session formation ") + return False, " Aucune unité d'enseignement pour cette promotion / session formation " # Verifier la validité de la liste des inscrits fournie @@ -2767,7 +2850,6 @@ def Cacul_Session_Note_Finale_For_calcul_Stanard(diction): upsert=False, ) - """ Apres avoir saisi la note finale sur l'inscription, on va mettre à jour le rang """ @@ -2778,16 +2860,17 @@ def Cacul_Session_Note_Finale_For_calcul_Stanard(diction): 'session_id':str(is_session_valide_data['_id']), 'valide': '1', 'locked': '0' }).sort( - [("note_finale", pymongo.DESCENDING), ]): + [("note_finale", pymongo.DESCENDING), ]).collation({'locale': "fr", 'numericOrdering': True}): if( sorted_data and "note_finale" in sorted_data.keys() ): + # Gestion des Execo if (str(note_precedente) != str(sorted_data['note_finale'])): classement = classement + 1 note_precedente = str(sorted_data['note_finale']) # MAJ du rang - #print(" MAJJ classement = ", classement) + MYSY_GV.dbname['inscription'].find_one_and_update( {'_id': ObjectId(str(sorted_data['_id'])), 'partner_owner_recid': str(sorted_data['partner_owner_recid']), @@ -2795,7 +2878,7 @@ def Cacul_Session_Note_Finale_For_calcul_Stanard(diction): 'locked': '0' }, - {"$set": {'rang': str(classement), 'rang_calculation_date':str(datetime.now())}}, + {"$set": {'rang': str("classement"), 'rang_calculation_date':str(datetime.now())}}, return_document=ReturnDocument.AFTER, upsert=False, ) @@ -3103,7 +3186,28 @@ def Create_Bulletin_By_Inscrit_PDF(diction): """ Creation du ficier PDF """ - contenu_doc_Template = jinja2.Template(str(template_courrier_data['contenu_doc'])) + header_html = """ + + + + + + """ + content_with_header = str(header_html)+str(template_courrier_data['contenu_doc'])+str(" ") + #print(" ### content_with_header = ", content_with_header) + contenu_doc_Template = jinja2.Template(str(content_with_header)) sourceHtml = contenu_doc_Template.render(params=body["params"]) @@ -3125,36 +3229,15 @@ def Create_Bulletin_By_Inscrit_PDF(diction): # close output file resultFile.close() - """ - # Create a PdfDocument object - doc = PdfDocument() - - # Load a PDF file - doc.LoadFromFile(outputFilename) - - # Create font and brush - font = PdfTrueTypeFont("DM Sans", 24.0, PdfFontStyle.Bold, True) - brush = PdfBrushes.get_DarkBlue() - - # Specify text to add to header - headerText = "ABC INC." - - # Iterate through the pages in the document - for i in range(doc.Pages.Count): - # Get a specific page - page = doc.Pages[i] - - # Draw a string at the specified position - page.Canvas.DrawString(headerText, font, brush, 54.0, 25.0) - print(" iiii ") - - # Save the changes to a different PDF file - doc.SaveToFile(str(MYSY_GV.TEMPORARY_DIRECTORY) + "/iiiiiii.pdf") - - # Dispose resources - doc.Dispose() - """ - #### + pied_page = "" + if( "company_data" in convention_dictionnary_data.keys()): + if("societe_nom" in convention_dictionnary_data['company_data'].keys() ): + pied_page = convention_dictionnary_data['company_data']['societe_nom']+ ", Num NDA "+convention_dictionnary_data['company_data']['societe_num_nda'] + pied_page = pied_page + ", Siret : " + convention_dictionnary_data['company_data']['societe_siret'] + pied_page = pied_page + ", Adresse "+ convention_dictionnary_data['company_data']['societe_adr_street'] + " "+convention_dictionnary_data['company_data']['societe_adr_zip'] + pied_page = pied_page + " " + convention_dictionnary_data['company_data']['societe_adr_city'] + pied_page = pied_page + " Tel : " + convention_dictionnary_data['company_data']['societe_telephone'] + pied_page = pied_page + " Email : " + convention_dictionnary_data['company_data']['societe_email'] input_file = outputFilename @@ -3171,21 +3254,20 @@ def Create_Bulletin_By_Inscrit_PDF(diction): canvas.doForm(makerl(canvas, page)) # Dessiner le pied de page - pied_page_html = """ - Votre société bla bla bla bla - Page %s sur %s

- """% (page_num, len(pages)) - print(" ## pied_page_html = ", pied_page_html) + pied_page_html = pied_page + pied_page_num_page_html = """%s/%s """ % (page_num, len(pages)) - footer_text = "Page %s sur %s" % (page_num, len(pages)) - x = 128 + x = 500 canvas.saveState() canvas.setStrokeColorRGB(0, 0, 0) canvas.setLineWidth(0.5) - canvas.line(66, 78, page.BBox[2] - 66, 78) - canvas.setFont('Times-Roman', 10) - canvas.drawString(page.BBox[2] - x, 65, pied_page_html) + + canvas.line(0, 50, 700, 50) + canvas.setFont('Times-Roman', 8) + + canvas.drawString(50, 35, pied_page_html) + canvas.drawString(550, 20, pied_page_num_page_html) canvas.restoreState() canvas.showPage() @@ -3260,10 +3342,10 @@ def Create_Bar_Chart_And_Save_Ok(diction): padding=4)""" labels = ax.bar_label(ax.containers[0], color='black', fontsize=10) - print(ax.legend()) + for label in labels: label.set_ha('right') - print(" ### label.get_text() = ", label.get_text()) + if label.get_text() == '40': label.set_color('b') label.set_text("Eleve") diff --git a/email_mgt.py b/email_mgt.py index 4e6a80b..21f4bb8 100644 --- a/email_mgt.py +++ b/email_mgt.py @@ -2706,9 +2706,9 @@ def ManualSendInvoiceEmailRIB_CIC_BureauVallee(diction): "params": {"order_id": "N/A", "date_order": ": 12/08/2025", "periode":"01/10/2025 au 31/10/2025", - "total_ht": "12 650", - "tva": "2 530", - "total_ttc": "15 279", + "total_ht": "12 749", + "tva": "2 549,8", + "total_ttc": "15 298,8", "client_name": "BVD Fr (Bureau Vallée)", "client_address": "25 rue du Gros Caillou", "client_zip_ville": "78340 – Les Clayes-sous-Bois", diff --git a/ent_student_common.py b/ent_student_common.py index 44890d1..289e05f 100644 --- a/ent_student_common.py +++ b/ent_student_common.py @@ -1073,6 +1073,7 @@ def Get_Ent_Student_Participant_Notes(diction): nb_val = 0 query = [{'$match': {'inscription_id': {'$in':tab_my_inscription_ids}, 'partner_owner_recid': str(apprenant_data['partner_owner_recid']), + 'publish':'1' }}, {'$sort': {'_id': -1}}, {'$lookup': diff --git a/jury_mgt.py b/jury_mgt.py index 8b37a2a..bce9816 100644 --- a/jury_mgt.py +++ b/jury_mgt.py @@ -5047,13 +5047,13 @@ def Send_Jury_Apprenant_Soutenance_Convocation_By_Email(tab_files, Folder, dicti - return True, " Les convocations au jury ont été correctement envoyées par emails" + return True, " Les convocations au jury ont été correctement envoyées par email" except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() mycommon.myprint(str(inspect.stack()[0][3]) + " -" + str(e) + " - Line : " + str(exc_tb.tb_lineno)) - return False, " Impossible d'envoyer les convocations au jury par emails" + return False, " Impossible d'envoyer les convocations au jury par email" diff --git a/main.py b/main.py index 255f4b2..4551fc2 100644 --- a/main.py +++ b/main.py @@ -3165,10 +3165,6 @@ def ManualSendInvoiceEmailRIB_CIC_BureauVallee(): - - - - """ API de recuperation au formation CSV de la liste des inscrits à une formation avec les statuts (validé ou pas) @@ -7404,7 +7400,7 @@ avec plusieurs filtres def Get_List_object_owner_collection_Stored_Files_With_Filter(): # On recupere le corps (payload) de la requete payload = mycommon.strip_dictionary (request.form.to_dict()) - print(" ### Get_List_object_owner_collection_Stored_Files_With_Filter : payload = ",) + print(" ### Get_List_object_owner_collection_Stored_Files_With_Filter : payload = ",payload) status, retval = attached_file_mgt.Get_List_object_owner_collection_Stored_Files_With_Filter(payload) return jsonify(status=status, message=retval) @@ -11276,6 +11272,23 @@ def Update_Participant_Evaluation_Note(): return jsonify(status=status, message=retval) + +""" +API pour publier ou dépublieres note evaluation +à une évaluation +""" +@app.route('/myclass/api/Publish_Unpublish_Participant_Evaluation_Note/', methods=['POST','GET']) +@crossdomain(origin='*') +def Publish_Unpublish_Participant_Evaluation_Note(): + # On recupere le corps (payload) de la requete + payload = mycommon.strip_dictionary (request.form.to_dict()) + print(" ### Publish_Unpublish_Participant_Evaluation_Note payload = ",payload) + status, retval = note_evaluation_mgt.Publish_Unpublish_Participant_Evaluation_Note(payload) + return jsonify(status=status, message=retval) + + + + """ API pour Recuperer la liste des inscrits et groupe inscrit à une evaluation @@ -14702,6 +14715,7 @@ if __name__ == '__main__': mycommon.myprint("++ FLASK PORT " + str(MYSY_GV.MYSY_PORT_REC) + " ++") mycommon.myprint("++ LMS_BAS_URL " + str(MYSY_GV.LMS_BAS_URL) + " ++") + """ scheduler = BackgroundScheduler() scheduler.start() @@ -14715,7 +14729,7 @@ if __name__ == '__main__': # WARNING IMPORTANT WARNING : Shut down the scheduler when exiting the app atexit.register(lambda: scheduler.shutdown()) - + """ app.run(host='localhost', port=MYSY_GV.MYSY_PORT_REC, debug=True, threaded=True) diff --git a/note_evaluation_mgt.py b/note_evaluation_mgt.py index ffd90ad..399ff0e 100644 --- a/note_evaluation_mgt.py +++ b/note_evaluation_mgt.py @@ -198,9 +198,8 @@ def Add_Evaluation_Planification(diction): local_mode_animation = diction['mode_animation'] - - new_data = diction + mytoken = diction['token'] del diction['token'] if( "mode_animation" in diction.keys() ): @@ -226,6 +225,25 @@ def Add_Evaluation_Planification(diction): " Impossible de créer l'évaluation (2) ") return False, " Impossible de créer l'évaluation (2) " + """ + # Ajout de l'evenement dans l'historique + """ + now = str(datetime.now().strftime("%d/%m/%Y %H:%M:%S")) + # print(" ####### laaaa diction = ", diction) + + history_event_dict = {} + history_event_dict['token'] = mytoken + history_event_dict['related_collection'] = "note_evaluation" + history_event_dict['related_collection_recid'] = str(inserted_id) + history_event_dict['action_date'] = str(now) + + history_event_dict['action_description'] = "Planification de l'évaluation " + local_status, local_retval = mycommon.Collection_Historique.Add_Historique_Event(history_event_dict) + if (local_status is False): + mycommon.myprint( + " WARNING : Impossible de logguer l'historique pour l'évènement : " + str(history_event_dict)) + + return True, " L'évaluation a été correctement ajoutée" @@ -398,6 +416,9 @@ def Update_Evaluation_Planification(diction): local_evaluation_id = diction['evaluation_id'] new_data = diction + mytoken = diction['token'] + myevaluation_id = diction['evaluation_id'] + del diction['token'] del diction['evaluation_id'] @@ -428,7 +449,23 @@ def Update_Evaluation_Planification(diction): " Impossible de mettre à jour l'évaluation (2) ") return False, " Impossible de mettre à jour l'évaluation (2) " + """ + # Ajout de l'evenement dans l'historique + """ + now = str(datetime.now().strftime("%d/%m/%Y %H:%M:%S")) + # print(" ####### laaaa diction = ", diction) + history_event_dict = {} + history_event_dict['token'] = mytoken + history_event_dict['related_collection'] = "note_evaluation" + history_event_dict['related_collection_recid'] = str(myevaluation_id) + history_event_dict['action_date'] = str(now) + + history_event_dict['action_description'] = "Mise à jour " + local_status, local_retval = mycommon.Collection_Historique.Add_Historique_Event(history_event_dict) + if (local_status is False): + mycommon.myprint( + " WARNING : Impossible de logguer l'historique pour l'évènement : " + str(history_event_dict)) return True, " L'évaluation a été correctement mise à jour" @@ -565,7 +602,7 @@ def Duplicate_Evaluation_Planification(diction): new_data = evaluation_id_data del new_data['_id'] - new_data['code'] = "Dup_"+str(evaluation_id_data['code']) + new_data['code'] = str(evaluation_id_data['code'])+"_dup" new_data['valide'] = "1" new_data['locked'] = "0" @@ -574,18 +611,30 @@ def Duplicate_Evaluation_Planification(diction): new_data['creation_by'] = str(my_partner['_id']) new_data['partner_owner_recid'] = str(my_partner['recid']) - result = MYSY_GV.dbname['note_evaluation'].insert_one(new_data).inserted_id - - if (result is None ): mycommon.myprint( " Impossible de dupliquer l'évaluation (2) ") return False, " Impossible de mettre à jour l'évaluation (2) " + """ + # Ajout de l'evenement dans l'historique + """ + now = str(datetime.now().strftime("%d/%m/%Y %H:%M:%S")) + # print(" ####### laaaa diction = ", diction) + history_event_dict = {} + history_event_dict['token'] = token + history_event_dict['related_collection'] = "note_evaluation" + history_event_dict['related_collection_recid'] = str(result) + history_event_dict['action_date'] = str(now) + history_event_dict['action_description'] = "Planification par duplication de "+str(evaluation_id_data['code']) + local_status, local_retval = mycommon.Collection_Historique.Add_Historique_Event(history_event_dict) + if (local_status is False): + mycommon.myprint( + " WARNING : Impossible de logguer l'historique pour l'évènement : " + str(history_event_dict)) return True, " L'évaluation a été correctement dupliquée" @@ -990,6 +1039,21 @@ def Delete_Evaluation_Planification(diction): str(inspect.stack()[0][3]) + " Il y a "+str(note_evaluation_participant_count)+" inscription(s) pour cette evaluation. Suppression annulée ") return False, " Il y a "+str(note_evaluation_participant_count)+" inscription(s) pour cette evaluation. Suppression annulée " + eval_data = MYSY_GV.dbname['note_evaluation'].find_one({'_id': ObjectId(str(diction['evaluation_id'])), + 'partner_owner_recid': my_partner['recid'], + 'valide': '1', + 'locked': '0' + }, {'_id':1, 'code':1, 'titre':1}) + + deleted_id = "" + deleted_code = "" + deleted_titre = "" + if( eval_data and 'code' in eval_data.keys()): + deleted_id = str(eval_data['_id']) + deleted_code = str(eval_data['code']) + + if (eval_data and 'titre' in eval_data.keys()): + deleted_titre = str(eval_data['titre']) delete = MYSY_GV.dbname['note_evaluation'].delete_one({ '_id':ObjectId(str(diction['evaluation_id'])), 'partner_owner_recid':my_partner['recid'], @@ -997,7 +1061,23 @@ def Delete_Evaluation_Planification(diction): 'locked': '0' } ) + """ + # Ajout de l'evenement dans l'historique + """ + now = str(datetime.now().strftime("%d/%m/%Y %H:%M:%S")) + # print(" ####### laaaa diction = ", diction) + history_event_dict = {} + history_event_dict['token'] = token + history_event_dict['related_collection'] = "note_evaluation" + history_event_dict['related_collection_recid'] = str(deleted_id) + history_event_dict['action_date'] = str(now) + + history_event_dict['action_description'] = "Suppresion de l'évaluation " + str(deleted_id)+ " code:"+str(deleted_code)+" titre:"+str(deleted_titre) + local_status, local_retval = mycommon.Collection_Historique.Add_Historique_Event(history_event_dict) + if (local_status is False): + mycommon.myprint( + " WARNING : Impossible de logguer l'historique pour l'évènement : " + str(history_event_dict)) return True, " La évaluation a été correctement supprimée" @@ -1921,8 +2001,8 @@ Mise à jour note evaluation Cette fonction met à jour la note d'un inscrit ou groupe d'inscrit. {note_evaluation_participant_id:'kjdskjkdj', tab_participant_note [ - {note_evaluation_participant_id:'4444', note:'33'}, - {note_evaluation_participant_id:'4444', note:'33'} + {note_evaluation_participant_id:'4444', note:'10', publish:'0'}, + {note_evaluation_participant_id:'4444', note:'17', publish:'1'} ] } """ @@ -1992,6 +2072,12 @@ def Update_Participant_Evaluation_Note(diction): else: new_data['note'] = "-1" + if ("publish" in val.keys()): + new_data['publish'] = str(val['publish']) + else: + new_data['publish'] = "0" + + new_data['valide'] = "1" new_data['locked'] = "0" new_data['date_update'] = str(datetime.now()) @@ -2015,6 +2101,123 @@ def Update_Participant_Evaluation_Note(diction): return False, "Impossible de mettre à jour les notes " +""" +Cette fonction permet de publier et dépublier des notes +""" +def Publish_Unpublish_Participant_Evaluation_Note(diction): + try: + diction = mycommon.strip_dictionary(diction) + + """ + Verification des input acceptés + """ + field_list = ['token', 'evaluation_id', 'tab_inscription_id', 'publish_status'] + + incom_keys = diction.keys() + for val in incom_keys: + if val not in field_list and val.startswith('my_') is False: + mycommon.myprint(str( + inspect.stack()[0][3]) + " Le champ '" + val + "' n'est pas autorisé") + return False, " Les informations fournies sont incorrectes" + + """ + Verification des champs obligatoires + """ + field_list_obligatoire = ['token', 'evaluation_id', 'tab_inscription_id', 'publish_status'] + + for val in field_list_obligatoire: + if val not in diction: + mycommon.myprint( + str(inspect.stack()[0][3]) + " - La valeur '" + val + "' n'est pas presente dans la liste des arguments ") + return False, " Les informations fournies sont incorrectes" + + """ + Verification de l'identité et autorisation de l'entité qui + appelle cette API + """ + token = "" + if ("token" in diction.keys()): + if diction['token']: + token = diction['token'] + + + if( diction['publish_status'] not in ['0', '1']): + mycommon.myprint( + str(inspect.stack()[0][ + 3]) + "Le statut de publication est invalide ") + return False, "Le statut de publication est invalide" + + local_status, my_partner = mycommon.Check_Connexion_And_Return_Partner_Data(diction) + if (local_status is not True): + return local_status, my_partner + + """ + Verifier que l'evaluation est valide + """ + is_evaluation_valide = MYSY_GV.dbname['note_evaluation'].count_documents( + {"_id": ObjectId(str(diction['evaluation_id'])), + 'valide': '1', + 'locked': '0', + 'partner_owner_recid': str(my_partner['recid'])}) + + if (is_evaluation_valide != 1): + mycommon.myprint( + str(inspect.stack()[0][3]) + " L'identifiant de l'évaluation n'est pas valide ") + return False, " L'identifiant de l'évaluation n'est pas valide " + + tab_id_to_update = [] + + tab_inscription_id = str(diction['tab_inscription_id']).split(",") + for inscription_id in tab_inscription_id: + if( inscription_id ): + # Verifier que le stagiaire est bien inscrit. Le statut de l'inscription doit etre "1" + + is_inscription_valide = MYSY_GV.dbname['note_evaluation_participant'].count_documents( + {'_id': ObjectId(str(inscription_id)), + 'partner_owner_recid': str(my_partner['recid'])}) + + if (is_inscription_valide != 1): + mycommon.myprint( + str(inspect.stack()[0][ + 3]) + " L'identifiant de l'inscription " + str(inscription_id) + " est invalide ") + return False, " L'identifiant de l'inscription " + str(inscription_id) + " est invalide " + + tab_id_to_update.append(ObjectId(str(inscription_id))) + + + warning_msg = "" + is_warning = "" + + new_data = {} + new_data['date_update'] = str(datetime.now()) + new_data['update_by'] = str(my_partner['_id']) + new_data['publish'] = str(diction['publish_status']) + + # Suppression des inscription + if( len(tab_id_to_update) > 0 and tab_id_to_update[0]): + qry_update_inscription = {'partner_owner_recid': str(my_partner['recid']), + "_id": {"$in": tab_id_to_update}, + } + + print(" ### qry_update_inscription = ", qry_update_inscription ) + + MYSY_GV.dbname['note_evaluation_participant'].update_many( + qry_update_inscription, + {'$set': new_data} + ) + + + + return True, " La mise à jour correctement faite" + + except Exception as e: + exc_type, exc_obj, exc_tb = sys.exc_info() + mycommon.myprint(str(inspect.stack()[0][3]) + " -" + str(e) + " - Line : " + str(exc_tb.tb_lineno)) + return False, "Impossible de mettre à jour les données" + + + + """ Recuperer la liste des inscrits et groupe inscrit à une evaluation @@ -2109,6 +2312,15 @@ def Get_List_Participant_To_Evaluation(diction): if( "note" not in retval.keys() ): user['note'] = "-1" + if ("publish" not in retval.keys()): + user['publish'] = False + + + if ("publish" in retval.keys() and retval['publish'] == "1"): + user['publish'] = True + elif ("publish" in retval.keys() and retval['publish'] != "1"): + user['publish'] = False + if( "convocation_send_date" not in user.keys() ): user['convocation_send_date'] = "" @@ -2273,6 +2485,14 @@ def Get_List_Participant_Notes(diction): user['inscription_id'] = str(retval['inscription_id']) user['note'] = str(retval['note']) + if ("publish" not in retval.keys()): + user['publish'] = False + + if ("publish" in retval.keys() and retval['publish'] == "1"): + user['publish'] = True + elif ("publish" in retval.keys() and retval['publish'] != "1"): + user['publish'] = False + user['note_evaluation_id'] = str(retval['note_evaluation_collection'][0]['_id']) user['note_evaluation_code'] = str(retval['note_evaluation_collection'][0]['code']) @@ -2452,7 +2672,7 @@ def Export_Excel_List_Participant_Notes(diction): outputFilename = str(MYSY_GV.TEMPORARY_DIRECTORY) + "/" + str(orig_file_name) tab_exported_fields_header = ["Formation", "Classe", "Nom", "Prenom", "Email", "UE Code", "UE Titre", - "Evaluation", "Début Evaluation", "Fin Evaluation", "Note" + "Evaluation", "Début Evaluation", "Fin Evaluation", "Note", "Publié" ] # Create a workbook and add a worksheet. @@ -2495,6 +2715,8 @@ def Export_Excel_List_Participant_Notes(diction): user['inscription_id'] = str(retval['inscription_id']) user['note'] = str(retval['note']) + + user['note_evaluation_id'] = str(retval['note_evaluation_collection'][0]['_id']) user['note_evaluation_code'] = str(retval['note_evaluation_collection'][0]['code']) @@ -2538,6 +2760,9 @@ def Export_Excel_List_Participant_Notes(diction): if( "note" not in retval.keys() ): user['note'] = "-1" + if ("publish" not in retval.keys()): + user['publish'] = "0" + user['class_id'] = str(retval['note_evaluation_collection'][0]['class_id']) myclass_data = MYSY_GV.dbname['myclass'].find_one({'_id':ObjectId(str(user['class_id'])), 'valide':'1', @@ -2607,6 +2832,10 @@ def Export_Excel_List_Participant_Notes(diction): worksheet.write(row, column, user['note']) column += 1 + # Champ : user['publish'] + worksheet.write(row, column, user['publish']) + column += 1 + nb_val = nb_val + 1 diff --git a/prj_common.py b/prj_common.py index cfe405c..ae9c703 100644 --- a/prj_common.py +++ b/prj_common.py @@ -8044,9 +8044,6 @@ def Get_total_Ponderation_Class_UE_Type_Eval( class_id, ue_id): somme_ponderation = 0 - print(" ### QRY Get_total_Ponderation_Class_UE_Type_Eval = ", {'class_id':class_id, - 'class_ue_id':ue_id, - }) for tmp in MYSY_GV.dbname['class_unite_enseignement_type_evaluation'].find({'class_id':class_id, 'class_ue_id':ue_id,