Elyos_FI_Back_Office/Ela_Spacy.py

386 lines
11 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import spacy
from spacy import displacy
import nltk
from nltk.corpus import stopwords
from nltk.stem.snowball import SnowballStemmer
import datetime
import pandas as pd
import numpy as np
import pymongo
from pymongo import MongoClient
from unidecode import unidecode
from collections import Counter
import ela_spacy_common as lsc
import prj_common as mycommon
CONNECTION_STRING = "mongodb://localhost/cherifdb"
## Gle Variables
stemmer = SnowballStemmer(language='french')
nlp = spacy.load("fr_core_news_sm")
token_fr_pontuation = []
#assign the default stopwords list to a variable
STOP_WORDS = spacy.lang.fr.stop_words.STOP_WORDS
stopWords = set(stopwords.words('french'))
sentence = "Bouygues a eu une coupure de réseau à Marseille chez ses clients marseillais et son couteau"
lsc.update_stopWords(stopWords)
#print(type(stopWords))
lsc.update_token_fr_pontuation(token_fr_pontuation)
#print("token_fr_pontuation")
#print(token_fr_pontuation)
'''
initialisation
'''
def init_ch():
stemmer = SnowballStemmer(language='french')
nlp = spacy.load("fr_core_news_sm")
token_fr_pontuation = []
# assign the default stopwords list to a variable
STOP_WORDS = spacy.lang.fr.stop_words.STOP_WORDS
stopWords = set(stopwords.words('french'))
sentence = "Bouygues a eu une coupure de réseau à Marseille chez ses clients marseillais et son couteau"
lsc.update_stopWords(stopWords)
# print(type(stopWords))
lsc.update_token_fr_pontuation(token_fr_pontuation)
'''
1. Tokenisation
La tokenisation cherche à transformer un texte en une série de tokens individuels.
Egalement il supprime les mots avec des accents (à, é, etc)
:return a tab
'''
def Ela_Normalize(sentence):
sentence = str(sentence).replace(",", " ")
sentence = str(sentence).replace(";", " ")
sentence = str(sentence).replace(".", " ")
sentence = str(sentence).replace("'", " ")
return sentence
'''
Suppression des ponctuations
'''
def Ela_remove_ponct(list):
for tmp in token_fr_pontuation:
while tmp in list:
list.remove(tmp)
return list
'''
Cette fonction supprimer les parasite des listes
comme " ", "]", " ", etc
'''
def Ela_Remove_Noise_from_list(list):
while ' ' in list:
list.remove(' ')
while '[' in list:
list.remove('[')
while ']' in list:
list.remove(']')
while '\\n' in list:
list.remove('\\n')
while ' ' in list:
list.remove(' ')
while '"' in list:
list.remove('"')
while ' ' in list:
list.remove(' ')
while ' ' in list:
list.remove(' ')
return list
def Ela_Tokenize(sentence):
# Tokeniser la phrase
sentence = Ela_Normalize(sentence)
doc = nlp(str(sentence).lower())
# Retourner le texte de chaque token
return [unidecode(X.text) for X in doc]
'''
2. Enlever les mots les plus fréquents
Certains mots se retrouvent très fréquemment dans la langue française.
En anglais, on les appelle les “stop words”.
Ces mots, bien souvent, napportent pas dinformation dans les tâches suivantes.
exemple :
{'ai', 'aie', 'aient', 'aies', 'ait', 'as', etc}
:return a tab
:input : Tab of tokens
'''
def Ela_remove_stop_words(tab_tokens):
clean_words = []
for token in tab_tokens:
if token not in stopWords:
clean_words.append(token)
return clean_words
'''
3.- Suppression des : ADP : adposition, DET : déterminant, CCONJ : coordination conjonction
La liste est la suivante:
ADJ : adjectif, ADP : adposition, ADV : adverbe, AUX : verbe auxiliaire, CONJ : coordination conjonction, DET : déterminant
INTJ : interjection, NOUN : nom, NUM : chiffre, PART : particule, PRON : pronom, PROPN : nom propre, PUNCT : ponctuation
SCONJ : conjonction subordonnée, SYM : symbole, VERB : verbe, X : autre
'''
def Ela_remove_pronoun(tab_tokens):
mywords = []
for token in tab_tokens:
mytok = nlp(str(token).lower())
for token2 in mytok:
if token2.pos_ != 'DET' and token2.pos_ != 'CCONJ' and token2.pos_ != 'ADP':
mywords.append(mytok)
return mywords
'''
# 4. Stemming
Le stemming consiste à réduire un mot dans sa forme “racine”. Le but du stemming est de regrouper de nombreuses variantes
dun mot comme un seul et même mot. Par exemple, une fois que lon applique un stemming sur “Chiens” ou “Chien”,
le mot résultant est le même.
'''
def Ela_stemmize(tab_tokens):
return [stemmer.stem(token.text) for token in tab_tokens]
'''
ELA NTLK :
cette fonction prends un texte et retour un tableau des mots
apres :
- Ela_remove_stop_words
- Ela_remove_pronoun et
- Ela_stemmize
'''
def ela_read_file():
with open('ela_test_file_v2.txt', mode="r", encoding="utf-8") as f:
lines = f.readlines()
tab_tokens = Ela_Tokenize(lines)
tab_tokens2 = Ela_remove_stop_words(tab_tokens)
tab_tokens3 = Ela_remove_pronoun(tab_tokens2)
tab_tokens4 = Ela_stemmize(tab_tokens3)
tab_tokens4 = Ela_Remove_Noise_from_list(tab_tokens4)
tab_tokens4 = Ela_remove_ponct(tab_tokens4)
# Enregistrement dans la base mongodb
Ela_list_to_mongo(tab_tokens4, "Tid_33345")
size_tab = len(tab_tokens4)
print("size_tab = " + str(size_tab))
occurrences = Counter(tab_tokens4)
most_common = occurrences.most_common()
print(most_common)
print(tab_tokens4)
my_file = open("ela_output_test_file.txt", "w")
my_file.write(str(tab_tokens4))
my_file.write(str("\\n---------- MOST COMMON -------\\n"))
my_file.write(str(most_common))
my_file.close()
'''
Indexation et enregistrement d'un token
IMPORTANT : Pour mutualiser le process entre l'indexation des tous les champs ou l'indexation de uniquement de certain champs
ex : indexation du champ 'title' ou du champ 'objectif', je vais introduitre la notion de 'source_fied'
pour l'indexation title, 'source_fied' = 'title'
pour l'indexation objectif, 'source_fied' = 'objectif'
'''
def ela_index_record_field(lines, class_id, source_field = ""):
try:
'''
## Suppression de toutes les indexation qui existe de cette formation
'''
client = MongoClient(CONNECTION_STRING)
dbname = client['cherifdb']
coll_name = dbname['elaindex']
# check default value of parameter : source_field
if len(str(source_field)) == 0 :
source_field = 'default'
myquery = {"id_formation": class_id, "source_field":source_field}
delete_row = coll_name.delete_many(myquery)
mycommon.myprint(" elaindex - "+str(delete_row.deleted_count)+" documents deleted. Training ==> "+str(class_id)+" ")
'''
Ajout des indexe
'''
tab_tokens = Ela_Tokenize(lines)
tab_tokens2 = Ela_remove_stop_words(tab_tokens)
tab_tokens3 = Ela_remove_pronoun(tab_tokens2)
tab_tokens4 = Ela_stemmize(tab_tokens3)
tab_tokens4 = Ela_Remove_Noise_from_list(tab_tokens4)
tab_tokens4 = Ela_remove_ponct(tab_tokens4)
# Enregistrement dans la base mongodb
Ela_list_to_mongo(tab_tokens4,class_id, source_field)
size_tab = len(tab_tokens4)
print("size_tab = " + str(size_tab))
occurrences = Counter(tab_tokens4)
most_common = occurrences.most_common()
print(most_common)
return True
except Exception as e:
mycommon.myprint(e)
return False
def Ela_ntlk(mysentence, traning_id):
tab_tokens = Ela_Tokenize(mysentence)
tab_tokens2 = Ela_remove_stop_words(tab_tokens)
tab_tokens3 = Ela_remove_pronoun(tab_tokens2)
tab_tokens4 = Ela_stemmize(tab_tokens3)
print("Ela_ntlk = "+str(tab_tokens4))
## Utiliser penda pour la manipulation des moyennes, sommes, etc
return tab_tokens4.sort()
def Ela_list_to_mongo(tab_tokens, traning_id, source_field):
try:
# clear / truncate elaindex
#db.elaindex.remove({})
# Recherche des occurence d'une valeur
my_file = open("ela_output_test_file_pandas_2.txt", "w")
size_tab = len(tab_tokens)
occurrences = Counter(tab_tokens)
# insert the list to the set
list_set = set(tab_tokens)
# convert the set to the list
unique_list = (list(list_set))
final_lists = []
for tmp in unique_list:
moyenne = round(int(occurrences[str(tmp)]) / size_tab, 2)
final_lists.append([str(tmp), str(occurrences[str(tmp)]), str(moyenne), str(traning_id), str(source_field)])
print(final_lists)
data = pd.DataFrame(final_lists, columns=('mots', "occurence", 'moyenne', 'id_formation', 'source_field'))
my_file.write(str(data))
my_file.close()
# Making a Connection with MongoClient
client = MongoClient("mongodb://localhost:27017/")
# database
db = client["cherifdb"]
# collection
collection = db["elaindex"]
data.reset_index(inplace=True)
data_dict = data.to_dict("records")
print(data_dict)
# Insert collection
collection.insert_many(data_dict)
data.to_csv("data_indexees.csv")
return True
except Exception as e :
mycommon.myprint(e)
return False
def test_ela_myntlk():
tab = []
tab_tokens = Ela_Tokenize(sentence)
tab_tokens2 = Ela_remove_stop_words(tab_tokens)
tab_tokens3 = Ela_remove_pronoun(tab_tokens2)
tab_tokens4 = Ela_stemmize(tab_tokens3)
tab_tokens4.sort()
Ela_list_to_mongo(tab_tokens4, 'Tid_3245')
exit()
'''
my_file = open("ela_output_test_file_pandas.txt", "w")
# Recherche des occurence d'une valeur
size_tab = len(tab_tokens4)
print("size_tab = "+str(size_tab))
occurrences = Counter(tab_tokens4)
# insert the list to the set
list_set = set(tab_tokens4)
# convert the set to the list
unique_list = (list(list_set))
final_lists = []
print(" MOT ==> Occurrence ==> Moyenne ")
for tmp in unique_list :
moyenne = round(int(occurrences[str(tmp)])/size_tab, 2)
#print(str(tmp)+" ==> "+str(occurrences[str(tmp)])+" ==> "+str(moyenne))
list_tmp = [tmp, str(occurrences[str(tmp)]), str(moyenne) ]
#print(list_tmp)
final_lists.append([str(tmp),str(occurrences[str(tmp)]),str(moyenne)])
print(" Finals Liste ")
my_file.write("\nWorld\n")
print(final_lists)
data = pd.DataFrame(final_lists, columns={'mots',"occurence",'moyenne'})
my_file.write(str("\n############ occurrences ############# \n"))
my_file.write(str(data))
most_common = occurrences.most_common()
print(most_common)
my_file.close()
'''